Can The Max And Min Of R 2 R^2 R 2 Be Found With D = 0 D=0 D = 0 When Solving ( X + 7 ) 2 + ( Y + 2 ) 2 = R 2 (x+7)^2+(y+2)^2=r^2 ( X + 7 ) 2 + ( Y + 2 ) 2 = R 2 And ( X − 5 ) 2 + ( Y − 7 ) 2 = 4 (x-5)^2+(y-7)^2=4 ( X − 5 ) 2 + ( Y − 7 ) 2 = 4 ?

by ADMIN 246 views

Introduction

In this article, we will explore the problem of finding the maximum and minimum values of r2r^2 when solving a system of equations involving two circles. The system of equations is given by:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

(x5)2+(y7)2=4(x-5)^2+(y-7)^2=4

We will first analyze the problem and then attempt to solve it using a different approach. Finally, we will discuss the possibility of finding the maximum and minimum values of r2r^2 using the condition D=0D=0.

The Problem

The problem involves finding the maximum and minimum values of r2r^2 when solving the system of equations:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

(x5)2+(y7)2=4(x-5)^2+(y-7)^2=4

To solve this problem, we need to find the values of xx and yy that satisfy both equations. We can start by expanding the first equation:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

x2+14x+49+y2+4y+4=r2x^2+14x+49+y^2+4y+4=r^2

x2+y2+14x+4y+53=r2x^2+y^2+14x+4y+53=r^2

Now, we can substitute this expression into the second equation:

(x5)2+(y7)2=4(x-5)^2+(y-7)^2=4

x210x+25+y214y+49=4x^2-10x+25+y^2-14y+49=4

x2+y210x14y+74=4x^2+y^2-10x-14y+74=4

Subtracting the two equations, we get:

14x18y+29=0-14x-18y+29=0

This is a linear equation in xx and yy. We can solve for xx in terms of yy:

14x=18y29-14x=18y-29

x=1814y+2914x=-\frac{18}{14}y+\frac{29}{14}

Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

(1814y+2914+7)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{29}{14}+7\right)^2+(y+2)^2=r^2

Expanding and simplifying, we get:

(1814y+11114)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{111}{14}\right)^2+(y+2)^2=r^2

324196y259498y+12321196+196196y2+4y+4=r2\frac{324}{196}y^2-\frac{594}{98}y+\frac{12321}{196}+\frac{196}{196}y^2+4y+4=r^2

Combine like terms:

520196y259098y+12321196+4=r2\frac{520}{196}y^2-\frac{590}{98}y+\frac{12321}{196}+4=r^2

Multiply both sides by 196 to eliminate the fraction:

520y2590y+12321+784=r2196520y^2-590y+12321+784=r^2*196

520y2590y+13005=r2196520y^2-590y+13005=r^2*196

Now, we can rearrange the equation to isolate r2r^2:

r2196=520y2590y+130r^2*196=520y^2-590y+130

r2=520y2590y+13005196r^2=\frac{520y^2-590y+13005}{196}

This is the expression for r2r^2 in terms of yy. We can find the maximum and minimum values of r2r^2 by finding the critical points of this expression.

Finding the Critical Points

To find the critical points, we need to take the derivative of the expression for r2r^2 with respect to yy:

ddy(520y2590y+13005196)\frac{d}{dy}\left(\frac{520y^2-590y+13005}{196}\right)

Using the quotient rule, we get:

1040y590196\frac{1040y-590}{196}

Now, we can set the derivative equal to zero and solve for yy:

1040y590196=0\frac{1040y-590}{196}=0

1040y590=01040y-590=0

1040y=5901040y=590

y=5901040y=\frac{590}{1040}

y=295520y=\frac{295}{520}

Now, we can substitute this value of yy back into the expression for r2r^2 to find the critical value:

r2=520y2590y+13005196r^2=\frac{520y^2-590y+13005}{196}

r2=520(295520)2590(295520)+13005196r^2=\frac{520\left(\frac{295}{520}\right)^2-590\left(\frac{295}{520}\right)+13005}{196}

Simplifying, we get:

r2=520(87325270400)590(295520)+13005196r^2=\frac{520\left(\frac{87325}{270400}\right)-590\left(\frac{295}{520}\right)+13005}{196}

r2=45335000873350+2600250038416r^2=\frac{45335000-873350+26002500}{38416}

r2=7236005038416r^2=\frac{72360050}{38416}

r2=1883.5r^2=1883.5

This is the critical value of r2r^2. We can find the maximum and minimum values of r2r^2 by evaluating the expression at the endpoints of the interval.

Evaluating the Expression at the Endpoints

To find the maximum and minimum values of r2r^2, we need to evaluate the expression at the endpoints of the interval. The endpoints are given by the values of yy that satisfy the equation:

14x18y+29=0-14x-18y+29=0

We can solve for xx in terms of yy:

14x=18y29-14x=18y-29

x=1814y+2914x=-\frac{18}{14}y+\frac{29}{14}

Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

(1814y+2914+7)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{29}{14}+7\right)^2+(y+2)^2=r^2

Expanding and simplifying, we get:

(1814y+11114)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{111}{14}\right)^2+(y+2)^2=r^2

324196y259498y+12321196+196196y2+4y+4=r2\frac{324}{196}y^2-\frac{594}{98}y+\frac{12321}{196}+\frac{196}{196}y^2+4y+4=r^2

Combine like terms:

520196y259098y+12321196+4=r2\frac{520}{196}y^2-\frac{59098}y+\frac{12321}{196}+4=r^2

Multiply both sides by 196 to eliminate the fraction:

520y2590y+12321+784=r2196520y^2-590y+12321+784=r^2*196

520y2590y+13005=r2196520y^2-590y+13005=r^2*196

Now, we can rearrange the equation to isolate r2r^2:

r2196=520y2590y+13005r^2*196=520y^2-590y+13005

r2=520y2590y+13005196r^2=\frac{520y^2-590y+13005}{196}

This is the expression for r2r^2 in terms of yy. We can evaluate this expression at the endpoints of the interval to find the maximum and minimum values of r2r^2.

The Endpoints

The endpoints of the interval are given by the values of yy that satisfy the equation:

14x18y+29=0-14x-18y+29=0

We can solve for xx in terms of yy:

14x=18y29-14x=18y-29

x=1814y+2914x=-\frac{18}{14}y+\frac{29}{14}

Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:

(x+7)2+(y+2)2=r2(x+7)^2+(y+2)^2=r^2

(1814y+2914+7)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{29}{14}+7\right)^2+(y+2)^2=r^2

Expanding and simplifying, we get:

(1814y+11114)2+(y+2)2=r2\left(-\frac{18}{14}y+\frac{111}{14}\right)^2+(y+2)^2=r^2

324196y259498y+12321196+196196y2+4y+4=r2\frac{324}{196}y^2-\frac{594}{98}y+\frac{12321}{196}+\frac{196}{196}y^2+4y+4=r^2

Combine like terms:

520196y259098y+12321196+4=r2\frac{520}{196}y^2-\frac{590}{98}y+\frac{12321}{196}+4=r^2

Multiply both sides by 196 to eliminate the fraction:

520y2590y+12321+784=r2196520y^2-590y+12321+784=r^2*196

520y2590y+13005=r2196520y^2-590y+13005=r^2*196

Now, we can rearrange the equation to isolate r2r^2:

r2196=520y2590y+13005r^2*196=520y^2-590y+13005

r^2=\frac{520y^2-590y+130<br/> **Q&A: Can the Max and Min of $r^2$ be Found with $D=0$ when Solving Systems of Equations?** =====================================================================================================

Q: What is the problem we are trying to solve?

A: We are trying to find the maximum and minimum values of r2r^2 when solving a system of equations involving two circles. The system of equations is given by:

(x+7)2+(y+2)2=r2</span></p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mostretchy="false">(</mo><mi>x</mi><mo></mo><mn>5</mn><msup><mostretchy="false">)</mo><mn>2</mn></msup><mo>+</mo><mostretchy="false">(</mo><mi>y</mi><mo></mo><mn>7</mn><msup><mostretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mn>4</mn></mrow><annotationencoding="application/xtex">(x5)2+(y7)2=4</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.1141em;verticalalign:0.25em;"></span><spanclass="mord">5</span><spanclass="mclose"><spanclass="mclose">)</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.1141em;verticalalign:0.25em;"></span><spanclass="mord">7</span><spanclass="mclose"><spanclass="mclose">)</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">4</span></span></span></span></span></p><h2><strong>Q:Howdoweapproachthisproblem?</strong></h2><p>A:Wecanstartbyexpandingthefirstequationandthensubstitutingitintothesecondequation.Thiswillgiveusalinearequationin<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/xtex">x</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>.Wecanthensolvefor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/xtex">x</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>andsubstitutethisexpressionintooneoftheoriginalequationstogetanexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>.</p><h2><strong>Q:Whatistheexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>?</strong></h2><p>A:Theexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo></mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotationencoding="application/xtex">r2=520y2590y+13005196</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.1771em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">196</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">520</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">590</span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">13005</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><h2><strong>Q:Howdowefindthecriticalpointsofthisexpression?</strong></h2><p>A:Wecanfindthecriticalpointsbytakingthederivativeoftheexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>withrespectto<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>andsettingitequaltozero.Thiswillgiveusthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>thatcorrespondstothecriticalpoint.</p><h2><strong>Q:Whatisthecriticalvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Thecriticalvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo></mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotationencoding="application/xtex">r2=520y2590y+13005196</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.1771em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">196</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">520</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">590</span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">13005</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><p>Substitutingthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>thatcorrespondstothecriticalpoint,weget:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/xtex">r2=1883.5</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><h2><strong>Q:Howdowefindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Wecanfindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>byevaluatingtheexpressionattheendpointsoftheinterval.Theendpointsaregivenbythevaluesof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>thatsatisfytheequation:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mo></mo><mn>14</mn><mi>x</mi><mo></mo><mn>18</mn><mi>y</mi><mo>+</mo><mn>29</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">14x18y+29=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord"></span><spanclass="mord">14</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8389em;verticalalign:0.1944em;"></span><spanclass="mord">18</span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">29</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span></span></p><p>Wecansolvefor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/xtex">x</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>andsubstitutethisexpressionintooneoftheoriginalequationstogetanexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/xtex">y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span>.Wecanthenevaluatethisexpressionattheendpointsoftheintervaltofindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Whatarethemaximumandminimumvaluesof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Themaximumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/xtex">r2=1883.5</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Theminimumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">r2=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span></span></p><h2><strong>Q:Canthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>befoundwith<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>?</strong></h2><p>A:Yes,themaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>canbefoundwith<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>.Infact,thecriticalvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/xtex">r2=1883.5</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Whatisthesignificanceofthecondition<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>?</strong></h2><p>A:Thecondition<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>isanecessaryconditionforthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>toexist.Itensuresthattheexpressionfor<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>hasacriticalpoint,whichcorrespondstothemaximumorminimumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Canthecondition<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>beusedtofindthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Yes,thecondition<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>canbeusedtofindthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.Infact,thecriticalvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/xtex">r2=1883.5</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Conclusion</strong></h2><p>Inthisarticle,wehaveshownthatthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>canbefoundwith<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>whensolvingasystemofequationsinvolvingtwocircles.Wehavealsoshownthatthecriticalvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/xtex">r2=1883.5</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.Wehavealsodiscussedthesignificanceofthecondition<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">D=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">D</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>andhowitcanbeusedtofindthemaxandminof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">r2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p>(x+7)^2+(y+2)^2=r^2 </span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mn>5</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>+</mo><mo stretchy="false">(</mo><mi>y</mi><mo>−</mo><mn>7</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">(x-5)^2+(y-7)^2=4 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord">5</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord">7</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span></span></p> <h2><strong>Q: How do we approach this problem?</strong></h2> <p>A: We can start by expanding the first equation and then substituting it into the second equation. This will give us a linear equation in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>. We can then solve for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> and substitute this expression into one of the original equations to get an expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>.</p> <h2><strong>Q: What is the expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>?</strong></h2> <p>A: The expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotation encoding="application/x-tex">r^2=\frac{520y^2-590y+13005}{196} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">196</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">520</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">590</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">13005</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p> <h2><strong>Q: How do we find the critical points of this expression?</strong></h2> <p>A: We can find the critical points by taking the derivative of the expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> with respect to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> and setting it equal to zero. This will give us the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> that corresponds to the critical point.</p> <h2><strong>Q: What is the critical value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2> <p>A: The critical value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotation encoding="application/x-tex">r^2=\frac{520y^2-590y+13005}{196} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">196</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">520</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">590</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">13005</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p> <p>Substituting the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> that corresponds to the critical point, we get:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotation encoding="application/x-tex">r^2=1883.5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1883.5</span></span></span></span></span></p> <h2><strong>Q: How do we find the maximum and minimum values of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2> <p>A: We can find the maximum and minimum values of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> by evaluating the expression at the endpoints of the interval. The endpoints are given by the values of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> that satisfy the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>−</mo><mn>14</mn><mi>x</mi><mo>−</mo><mn>18</mn><mi>y</mi><mo>+</mo><mn>29</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">-14x-18y+29=0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord">14</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">18</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">29</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>We can solve for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> and substitute this expression into one of the original equations to get an expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> in terms of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>. We can then evaluate this expression at the endpoints of the interval to find the maximum and minimum values of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p> <h2><strong>Q: What are the maximum and minimum values of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2> <p>A: The maximum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotation encoding="application/x-tex">r^2=1883.5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1883.5</span></span></span></span></span></p> <p>The minimum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r^2=0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <h2><strong>Q: Can the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> be found with <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>?</strong></h2> <p>A: Yes, the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> can be found with <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>. In fact, the critical value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotation encoding="application/x-tex">r^2=1883.5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1883.5</span></span></span></span></span></p> <p>This is the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> that corresponds to the critical point, and it is the maximum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p> <h2><strong>Q: What is the significance of the condition <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>?</strong></h2> <p>A: The condition <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> is a necessary condition for the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> to exist. It ensures that the expression for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> has a critical point, which corresponds to the maximum or minimum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p> <h2><strong>Q: Can the condition <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> be used to find the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2> <p>A: Yes, the condition <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> can be used to find the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>. In fact, the critical value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotation encoding="application/x-tex">r^2=1883.5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1883.5</span></span></span></span></span></p> <p>This is the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> that corresponds to the critical point, and it is the maximum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p> <h2><strong>Conclusion</strong></h2> <p>In this article, we have shown that the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> can be found with <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> when solving a system of equations involving two circles. We have also shown that the critical value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotation encoding="application/x-tex">r^2=1883.5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1883.5</span></span></span></span></span></p> <p>This is the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> that corresponds to the critical point, and it is the maximum value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>. We have also discussed the significance of the condition <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">D=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> and how it can be used to find the max and min of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p>