
Introduction
In this article, we will explore the problem of finding the maximum and minimum values of r2 when solving a system of equations involving two circles. The system of equations is given by:
(x+7)2+(y+2)2=r2
(x−5)2+(y−7)2=4
We will first analyze the problem and then attempt to solve it using a different approach. Finally, we will discuss the possibility of finding the maximum and minimum values of r2 using the condition D=0.
The Problem
The problem involves finding the maximum and minimum values of r2 when solving the system of equations:
(x+7)2+(y+2)2=r2
(x−5)2+(y−7)2=4
To solve this problem, we need to find the values of x and y that satisfy both equations. We can start by expanding the first equation:
(x+7)2+(y+2)2=r2
x2+14x+49+y2+4y+4=r2
x2+y2+14x+4y+53=r2
Now, we can substitute this expression into the second equation:
(x−5)2+(y−7)2=4
x2−10x+25+y2−14y+49=4
x2+y2−10x−14y+74=4
Subtracting the two equations, we get:
−14x−18y+29=0
This is a linear equation in x and y. We can solve for x in terms of y:
−14x=18y−29
x=−1418y+1429
Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:
(x+7)2+(y+2)2=r2
(−1418y+1429+7)2+(y+2)2=r2
Expanding and simplifying, we get:
(−1418y+14111)2+(y+2)2=r2
196324y2−98594y+19612321+196196y2+4y+4=r2
Combine like terms:
196520y2−98590y+19612321+4=r2
Multiply both sides by 196 to eliminate the fraction:
520y2−590y+12321+784=r2∗196
520y2−590y+13005=r2∗196
Now, we can rearrange the equation to isolate r2:
r2∗196=520y2−590y+130
r2=196520y2−590y+13005
This is the expression for r2 in terms of y. We can find the maximum and minimum values of r2 by finding the critical points of this expression.
Finding the Critical Points
To find the critical points, we need to take the derivative of the expression for r2 with respect to y:
dyd(196520y2−590y+13005)
Using the quotient rule, we get:
1961040y−590
Now, we can set the derivative equal to zero and solve for y:
1961040y−590=0
1040y−590=0
1040y=590
y=1040590
y=520295
Now, we can substitute this value of y back into the expression for r2 to find the critical value:
r2=196520y2−590y+13005
r2=196520(520295)2−590(520295)+13005
Simplifying, we get:
r2=196520(27040087325)−590(520295)+13005
r2=3841645335000−873350+26002500
r2=3841672360050
r2=1883.5
This is the critical value of r2. We can find the maximum and minimum values of r2 by evaluating the expression at the endpoints of the interval.
Evaluating the Expression at the Endpoints
To find the maximum and minimum values of r2, we need to evaluate the expression at the endpoints of the interval. The endpoints are given by the values of y that satisfy the equation:
−14x−18y+29=0
We can solve for x in terms of y:
−14x=18y−29
x=−1418y+1429
Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:
(x+7)2+(y+2)2=r2
(−1418y+1429+7)2+(y+2)2=r2
Expanding and simplifying, we get:
(−1418y+14111)2+(y+2)2=r2
196324y2−98594y+19612321+196196y2+4y+4=r2
Combine like terms:
196520y2−y59098+19612321+4=r2
Multiply both sides by 196 to eliminate the fraction:
520y2−590y+12321+784=r2∗196
520y2−590y+13005=r2∗196
Now, we can rearrange the equation to isolate r2:
r2∗196=520y2−590y+13005
r2=196520y2−590y+13005
This is the expression for r2 in terms of y. We can evaluate this expression at the endpoints of the interval to find the maximum and minimum values of r2.
The Endpoints
The endpoints of the interval are given by the values of y that satisfy the equation:
−14x−18y+29=0
We can solve for x in terms of y:
−14x=18y−29
x=−1418y+1429
Now, we can substitute this expression into one of the original equations. Let's substitute it into the first equation:
(x+7)2+(y+2)2=r2
(−1418y+1429+7)2+(y+2)2=r2
Expanding and simplifying, we get:
(−1418y+14111)2+(y+2)2=r2
196324y2−98594y+19612321+196196y2+4y+4=r2
Combine like terms:
196520y2−98590y+19612321+4=r2
Multiply both sides by 196 to eliminate the fraction:
520y2−590y+12321+784=r2∗196
520y2−590y+13005=r2∗196
Now, we can rearrange the equation to isolate r2:
r2∗196=520y2−590y+13005
r^2=\frac{520y^2-590y+130<br/>
**Q&A: Can the Max and Min of $r^2$ be Found with $D=0$ when Solving Systems of Equations?**
=====================================================================================================
Q: What is the problem we are trying to solve?

A: We are trying to find the maximum and minimum values of r2 when solving a system of equations involving two circles. The system of equations is given by:
(x+7)2+(y+2)2=r2</span></p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mostretchy="false">(</mo><mi>x</mi><mo>−</mo><mn>5</mn><msup><mostretchy="false">)</mo><mn>2</mn></msup><mo>+</mo><mostretchy="false">(</mo><mi>y</mi><mo>−</mo><mn>7</mn><msup><mostretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mn>4</mn></mrow><annotationencoding="application/x−tex">(x−5)2+(y−7)2=4</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">−</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.1141em;vertical−align:−0.25em;"></span><spanclass="mord">5</span><spanclass="mclose"><spanclass="mclose">)</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">−</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.1141em;vertical−align:−0.25em;"></span><spanclass="mord">7</span><spanclass="mclose"><spanclass="mclose">)</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">4</span></span></span></span></span></p><h2><strong>Q:Howdoweapproachthisproblem?</strong></h2><p>A:Wecanstartbyexpandingthefirstequationandthensubstitutingitintothesecondequation.Thiswillgiveusalinearequationin<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/x−tex">x</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>and<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>.Wecanthensolvefor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/x−tex">x</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>andsubstitutethisexpressionintooneoftheoriginalequationstogetanexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>.</p><h2><strong>Q:Whatistheexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>?</strong></h2><p>A:Theexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotationencoding="application/x−tex">r2=196520y2−590y+13005</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.1771em;vertical−align:−0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:−2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">196</span></span></span><spanstyle="top:−3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="frac−line"style="border−bottom−width:0.04em;"></span></span><spanstyle="top:−3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">520</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">−</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mord">590</span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mord">13005</span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><h2><strong>Q:Howdowefindthecriticalpointsofthisexpression?</strong></h2><p>A:Wecanfindthecriticalpointsbytakingthederivativeoftheexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>withrespectto<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>andsettingitequaltozero.Thiswillgiveusthevalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>thatcorrespondstothecriticalpoint.</p><h2><strong>Q:Whatisthecriticalvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Thecriticalvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>520</mn><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>590</mn><mi>y</mi><mo>+</mo><mn>13005</mn></mrow><mn>196</mn></mfrac></mrow><annotationencoding="application/x−tex">r2=196520y2−590y+13005</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.1771em;vertical−align:−0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:−2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">196</span></span></span><spanstyle="top:−3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="frac−line"style="border−bottom−width:0.04em;"></span></span><spanstyle="top:−3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">520</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">−</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mord">590</span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mord">13005</span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><p>Substitutingthevalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>thatcorrespondstothecriticalpoint,weget:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/x−tex">r2=1883.5</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><h2><strong>Q:Howdowefindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Wecanfindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>byevaluatingtheexpressionattheendpointsoftheinterval.Theendpointsaregivenbythevaluesof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>thatsatisfytheequation:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mo>−</mo><mn>14</mn><mi>x</mi><mo>−</mo><mn>18</mn><mi>y</mi><mo>+</mo><mn>29</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">−14x−18y+29=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.7278em;vertical−align:−0.0833em;"></span><spanclass="mord">−</span><spanclass="mord">14</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">−</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8389em;vertical−align:−0.1944em;"></span><spanclass="mord">18</span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">29</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span></span></p><p>Wecansolvefor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotationencoding="application/x−tex">x</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>andsubstitutethisexpressionintooneoftheoriginalequationstogetanexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>intermsof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotationencoding="application/x−tex">y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>.Wecanthenevaluatethisexpressionattheendpointsoftheintervaltofindthemaximumandminimumvaluesof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Whatarethemaximumandminimumvaluesof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Themaximumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/x−tex">r2=1883.5</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Theminimumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">r2=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span></span></p><h2><strong>Q:Canthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>befoundwith<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>?</strong></h2><p>A:Yes,themaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>canbefoundwith<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>.Infact,thecriticalvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/x−tex">r2=1883.5</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Whatisthesignificanceofthecondition<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>?</strong></h2><p>A:Thecondition<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>isanecessaryconditionforthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>toexist.Itensuresthattheexpressionfor<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>hasacriticalpoint,whichcorrespondstothemaximumorminimumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:Canthecondition<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>beusedtofindthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>?</strong></h2><p>A:Yes,thecondition<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>canbeusedtofindthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.Infact,thecriticalvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/x−tex">r2=1883.5</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Conclusion</strong></h2><p>Inthisarticle,wehaveshownthatthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>canbefoundwith<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>whensolvingasystemofequationsinvolvingtwocircles.Wehavealsoshownthatthecriticalvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>isgivenby:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>1883.5</mn></mrow><annotationencoding="application/x−tex">r2=1883.5</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8641em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1883.5</span></span></span></span></span></p><p>Thisisthevalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>thatcorrespondstothecriticalpoint,anditisthemaximumvalueof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.Wehavealsodiscussedthesignificanceofthecondition<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">D=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.02778em;">D</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>andhowitcanbeusedtofindthemaxandminof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow><annotationencoding="application/x−tex">r2</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.02778em;">r</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</p>