Conditions Of "Norm" Isomorphism In Quaternion Algebra
Introduction
In the realm of quaternion algebra, the concept of "norm" isomorphism plays a crucial role in understanding the properties and behavior of quaternions. The norm of a quaternion is a scalar value that represents the magnitude or size of the quaternion. In this article, we will delve into the conditions of "norm" isomorphism in quaternion algebra, exploring the underlying mathematical framework and its implications.
Quaternion Algebra
Quaternion algebra is a mathematical structure that extends the real numbers to include three additional imaginary units, denoted as i, j, and k. These imaginary units satisfy certain rules and relationships, which form the foundation of quaternion algebra. The quaternions are represented as:
where w, x, y, and z are real numbers, and i, j, and k are the imaginary units.
Norm of a Quaternion
The norm of a quaternion q is defined as:
where T denotes the trace of the quaternion. The norm of a quaternion represents its magnitude or size, and it plays a crucial role in many applications of quaternion algebra.
Conditions of "Norm" Isomorphism
The problem of determining the conditions of "norm" isomorphism in quaternion algebra is a fundamental question in the field. In this context, an isomorphism between two quaternion algebras A and B is a bijective map φ: A → B that preserves the norm. In other words, φ satisfies the following condition:
for all x in A.
Exercise III.4.(b) of Lam's Introduction to Quadratic Forms over Fields
The problem of determining the conditions of "norm" isomorphism in quaternion algebra is Exercise III.4.(b) of Lam's Introduction to Quadratic Forms over Fields. The problem statement is as follows:
If one defines on , where and , , , show that the map defined by is an isomorphism.
Solution
To show that the map φ is an isomorphism, we need to verify that it preserves the norm. In other words, we need to show that:
for all x in A.
Using the definition of the norm, we have:
\widetilde{\{N}} \left(\varphi\left(x\right)\right) = \mathrm{T}\left(\varphi\left(x\right)^{2}\right)/2
Now, we can compute the square of φ(x):
Using the properties of the trace, we can simplify the expression:
+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jxright)\mathrm{tr}\left(kx\right)\right)
Q&A
Q: What is the norm of a quaternion?
A: The norm of a quaternion q is defined as:
\widetilde{\mathrm{N}} q = \mathrm{T}\left(q^{2}\right)/2 </span></p> <p>where T denotes the trace of the quaternion.</p> <h2><strong>Q: What is the significance of the norm of a quaternion?</strong></h2> <p>A: The norm of a quaternion represents its magnitude or size, and it plays a crucial role in many applications of quaternion algebra.</p> <h2><strong>Q: What is an isomorphism between two quaternion algebras?</strong></h2> <p>A: An isomorphism between two quaternion algebras A and B is a bijective map φ: A → B that preserves the norm. In other words, φ satisfies the following condition:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mrow><mo fence="true">(</mo><mi>φ</mi><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow><mo>=</mo><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mi>x</mi></mrow><annotation encoding="application/x-tex">\widetilde{\mathrm{N}} \left(\varphi\left(x\right)\right) = \widetilde{\mathrm{N}} x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1933em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9433em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>for all x in A.</p> <h2><strong>Q: How do we determine if a map is an isomorphism?</strong></h2> <p>A: To determine if a map is an isomorphism, we need to verify that it preserves the norm. In other words, we need to show that:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mrow><mo fence="true">(</mo><mi>φ</mi><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow><mo>=</mo><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mi>x</mi></mrow><annotation encoding="application/x-tex">\widetilde{\mathrm{N}} \left(\varphi\left(x\right)\right) = \widetilde{\mathrm{N}} x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1933em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9433em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>for all x in A.</p> <h2><strong>Q: What is the map φ in Exercise III.4.(b) of Lam's Introduction to Quadratic Forms over Fields?</strong></h2> <p>A: The map φ in Exercise III.4.(b) of Lam's Introduction to Quadratic Forms over Fields is defined as:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>φ</mi><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\varphi\left(x\right) = \left(\mathrm{tr}\left(x\right),\mathrm{tr}\left(ix\right),\mathrm{tr}\left(jx\right),\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <h2><strong>Q: How do we show that the map φ is an isomorphism?</strong></h2> <p>A: To show that the map φ is an isomorphism, we need to verify that it preserves the norm. In other words, we need to show that:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mrow><mo fence="true">(</mo><mi>φ</mi><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow><mo>=</mo><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mi>x</mi></mrow><annotation encoding="application/x-tex">\widetilde{\mathrm{N}} \left(\varphi\left(x\right)\right) = \widetilde{\mathrm{N}} x </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1933em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9433em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>for all x in A.</p> <p>Using the definition of the norm, we have:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi mathvariant="normal">N</mi><mo stretchy="true">~</mo></mover><mrow><mo fence="true">(</mo><mi>φ</mi><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow><mo>=</mo><mi mathvariant="normal">T</mi><mrow><mo fence="true">(</mo><mi>φ</mi><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\widetilde{\mathrm{N}} \left(\varphi\left(x\right)\right) = \mathrm{T}\left(\varphi\left(x\right)^{2}\right)/2 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1933em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9433em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathrm">N</span></span><span class="svg-align" style="width:calc(100% - 0.1667em);margin-left:0.1667em;top:-3.6833em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg xmlns="http://www.w3.org/2000/svg" width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 -2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 -68.267.847-113-73.952-191-73.952z"/></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathrm">T</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">/2</span></span></span></span></span></p> <p>Now, we can compute the square of φ(x):</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>φ</mi><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>=</mo><msup><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\varphi\left(x\right)^{2} = \left(\mathrm{tr}\left(x\right),\mathrm{tr}\left(ix\right),\mathrm{tr}\left(jx\right),\mathrm{tr}\left(kx\right)\right)^{2} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.204em;vertical-align:-0.25em;"></span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.204em;vertical-align:-0.25em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-error" title="ParseError: KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at end of input: …ht)^{2}\right) " style="color:#cc0000">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{trleft(kx\right)^{2}\right) </span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p>Using the properties of the trace, we can simplify the expression:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>φ</mi><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\varphi\left(x\right)^{2} = \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.204em;vertical-align:-0.25em;"></span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>+</mo><mn>2</mn><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">+ 2\left(\mathrm{tr}\left(ix\right)\mathrm{tr}\left(jx\right) + \mathrm{tr}\left(ix\right)\mathrm{tr}\left(kx\right) + \mathrm{tr}\left(jx\right)\mathrm{tr}\left(kx\right)\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord">2</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>=</mo><mrow><mo fence="true">(</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>i</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>j</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mrow><mi mathvariant="normal">t</mi><mi mathvariant="normal">r</mi></mrow><msup><mrow><mo fence="true">(</mo><mi>k</mi><mi>x</mi><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">= \left(\mathrm{tr}\left(x\right)^{2} + \mathrm{tr}\left(ix\right)^{2} + \mathrm{tr}\left(jx\right)^{2} + \mathrm{tr}\left(kx\right)^{2}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">i</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954em;"><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></p> <p class='katex-block'><span class="katex-error" title="ParseError: KaTeX parse error: Expected '\right', got 'EOF' at end of input: …t)\mathrm{tr}\ " style="color:#cc0000">+ 2\left(\mathrm{tr}\left(x\right)\mathrm{tr}\left(ix\right) + \mathrm{tr}\left(x\right)\mathrm{tr}\ </span></p>