Existence And Uniqueness Of Some PDE

by ADMIN 37 views

Introduction

Partial Differential Equations (PDEs) are a fundamental tool in modeling various phenomena in physics, engineering, and other fields. The existence and uniqueness of solutions to PDEs are crucial in understanding the behavior of these phenomena. In this article, we will discuss the existence and uniqueness of solutions to a specific class of PDEs, which is given by:

\begin{align} \begin{cases} (-\Delta)^\alpha u(x) + \frac{f(x)}{u^{\beta}(x)} = c \quad & \text{for xRnx \in \mathbb{R}^n} \ u(x) \to 0 \quad & \text{as x|x| \to \infty} \end{cases} \end{align}

where (Δ)α(-\Delta)^\alpha is the fractional Laplacian operator, f(x)f(x) is a given function, cc is a constant, and α\alpha and β\beta are positive real numbers.

Preliminaries

Before we proceed to the main discussion, let us recall some basic concepts and results in functional analysis and partial differential equations.

Fractional Laplacian Operator

The fractional Laplacian operator (Δ)α(-\Delta)^\alpha is defined as:

(Δ)αu(x)=Rnu(x)u(y)xyn+2αdy(-\Delta)^\alpha u(x) = \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x-y|^{n+2\alpha}} dy

for uLloc1(Rn)u \in L^1_{loc}(\mathbb{R}^n).

Weak Solutions

A weak solution to the PDE is a function uLloc1(Rn)u \in L^1_{loc}(\mathbb{R}^n) that satisfies the following equation:

Rn(Δ)αu(x)ϕ(x)dx+Rnf(x)uβ(x)ϕ(x)dx=cRnϕ(x)dx\int_{\mathbb{R}^n} (-\Delta)^\alpha u(x) \phi(x) dx + \int_{\mathbb{R}^n} \frac{f(x)}{u^{\beta}(x)} \phi(x) dx = c \int_{\mathbb{R}^n} \phi(x) dx

for all ϕCc(Rn)\phi \in C^\infty_c(\mathbb{R}^n).

Existence of Solutions

To show the existence of solutions to the PDE, we will use the following theorem:

Theorem 1 (Mountain Pass Theorem).: Let XX be a Banach space and IC1(X,R)I \in C^1(X, \mathbb{R}) be a functional such that I(0)=0I(0) = 0 and II satisfies the Palais-Smale condition. Suppose that there exist r>0r > 0 and δ>0\delta > 0 such that I(u)δI(u) \geq \delta for all uXu \in X with u=r\|u\| = r. Then, there exists uXu \in X such that I(u)=infvXmaxt[0,1]I(tv)I(u) = \inf_{v \in X} \max_{t \in [0,1]} I(tv). Moreover, if II is even and I(u)0I(u) \geq 0 for all uXu \in X, then the solution uu is non-negative.

We will apply this theorem to the functional:

I(u)=12Rn(Δ)αu(x)u(x)dx+1βRnf(x)uβ(x)u(x)dxcRnu(x)dxI(u) = \frac{1}{2} \int_{\mathbb{R}^n} (-\Delta)^\alpha u(x) u(x) dx + \frac{1}{\beta} \int_{\mathbb{R}^n} \frac{f(x)}{u^{\beta}(x)} u(x) dx - c \int_{\mathbb{R}^n} u(x) dx

which is defined on the space X=Lloc1(Rn)X = L^1_{loc}(\mathbb{R}^n).

Proof of Existence

To show that the functional II satisfies the Palais-Smale condition, we need to prove that any sequence {un}X\{u_n\} \subset X such that I(un)I(u_n) \to \infty as nn \to \infty has a convergent subsequence.

Let {un}X\{u_n\} \subset X be a sequence such that I(un)I(u_n) \to \infty as nn \to \infty. We need to show that there exists a subsequence {unk}\{u_{n_k}\} such that unkuu_{n_k} \to u in XX as kk \to \infty.

Since I(un)I(u_n) \to \infty as nn \to \infty, we have that:

Rn(Δ)αun(x)un(x)dx+Rnf(x)unβ(x)un(x)dxcRnun(x)dx\int_{\mathbb{R}^n} (-\Delta)^\alpha u_n(x) u_n(x) dx + \int_{\mathbb{R}^n} \frac{f(x)}{u_n^{\beta}(x)} u_n(x) dx - c \int_{\mathbb{R}^n} u_n(x) dx \to \infty

as nn \to \infty. This implies that:

Rn(Δ)αun(x)un(x)dx\int_{\mathbb{R}^n} (-\Delta)^\alpha u_n(x) u_n(x) dx \to \infty

as nn \to \infty. Since the fractional Laplacian operator is a bounded operator, we have that:

unL2(Rn)\|u_n\|_{L^2(\mathbb{R}^n)} \to \infty

as nn \to \infty. This implies that:

1unL2(Rn)Rnf(x)unβ(x)un(x)dx0\frac{1}{\|u_n\|_{L^2(\mathbb{R}^n)}} \int_{\mathbb{R}^n} \frac{f(x)}{u_n^{\beta}(x)} u_n(x) dx \to 0

as nn \to \infty. Therefore, we have that:

Rn(Δ)αun(x)un(x)dx\int_{\mathbb{R}^n} (-\Delta)^\alpha u_n(x) u_n(x) dx \to \infty

as nn \to \infty.

Since the fractional Laplacian operator is a bounded operator, we have that:

unL2(Rn)\|u_n\|_{L^2(\mathbb{R}^n)} \to \infty

as nn \to \infty. This implies that:

1unL2(Rn)Rn(Δ)αun(x)un(x)dx0\frac{1}{\|u_n\|_{L^2(\mathbb{R}^n)}} \int_{\mathbb{R}^n} (-\Delta)^\alpha u_n(x) u_n(x) dx \to 0

as nn \to \infty. Therefore, we have that:

Rnf(x)unβ(x)un(x)dx0\int_{\mathbb{R}^n} \frac{f(x)}{u_n^{\beta}(x)} u_n(x) dx \to 0

as nn \to \infty.

Since f(x)f(x) is a bounded function, we have that:

Rnf(x)unβ(x)un(x)dxfL(Rn)Rn1unβ(x)un(x)dx\int_{\mathbb{R}^n} \frac{f(x)}{u_n^{\beta}(x)} u_n(x) dx \leq \|f\|_{L^\infty(\mathbb{R}^n)} \int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} u_n(x) dx

as nn \to \infty. This implies that:

Rn1unβ(x)un(x)dx0\int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} u_n(x) dx \to 0

as nn \to \infty.

Since un(x)0u_n(x) \to 0 as x|x| \to \infty, we have that:

Rn1unβ(x)un(x)dxRn1unβ(x)un(x)dx\int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} u_n(x) dx \leq \int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} |u_n(x)| dx

as nn \to \infty. This implies that:

Rn1unβ(x)un(x)dx0\int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} |u_n(x)| dx \to 0

as nn \to \infty.

Since un(x)0u_n(x) \to 0 as x|x| \to \infty, we have that:

Rn1unβ(x)un(x)dxRn1un(x)β1dx\int_{\mathbb{R}^n} \frac{1}{u_n^{\beta}(x)} |u_n(x)| dx \leq \int_{\mathbb{R}^n} \frac{1}{|u_n(x)|^{\beta-1}} dx

as nn \to \infty. This implies that:

Rn1un(x)β1dx0\int_{\mathbb{R}^n} \frac{1}{|u_n(x)|^{\beta-1}} dx \to 0

as nn \to \infty.

Since β>1\beta > 1, we have that:

\int_{\mathbb{R}^n} \frac{1}{|u_n(x)|^{\beta-1}} dx \leq \int_{\mathbb<br/> **Q&A: Existence and Uniqueness of Solutions to a Class of Partial Differential Equations** =====================================================================================

Q: What is the main goal of this article?

A: The main goal of this article is to discuss the existence and uniqueness of solutions to a specific class of partial differential equations (PDEs), which is given by:

\begin{align} \begin{cases} (-\Delta)^\alpha u(x) + \frac{f(x)}{u^{\beta}(x)} = c \quad &amp; \text{for xRnx \in \mathbb{R}^n} \ u(x) \to 0 \quad &amp; \text{as x|x| \to \infty} \end{cases} \end{align}

Q: What is the fractional Laplacian operator?

A: The fractional Laplacian operator (Δ)α(-\Delta)^\alpha is defined as:

(-\Delta)^\alpha u(x) = \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x-y|^{n+2\alpha}} dy </span></p> <p>for <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><msubsup><mi>L</mi><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mn>1</mn></msubsup><mo stretchy="false">(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u \in L^1_{loc}(\mathbb{R}^n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0972em;vertical-align:-0.2831em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4169em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">oc</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>.</p> <h2><strong>Q: What is a weak solution to the PDE?</strong></h2> <p>A: A weak solution to the PDE is a function <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><msubsup><mi>L</mi><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mn>1</mn></msubsup><mo stretchy="false">(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u \in L^1_{loc}(\mathbb{R}^n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0972em;vertical-align:-0.2831em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4169em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">oc</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2831em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> that satisfies the following equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mo>∫</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></msub><mo stretchy="false">(</mo><mo>−</mo><mi mathvariant="normal">Δ</mi><msup><mo stretchy="false">)</mo><mi>α</mi></msup><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>x</mi><mo>+</mo><msub><mo>∫</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></msub><mfrac><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mrow><msup><mi>u</mi><mi>β</mi></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mfrac><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>x</mi><mo>=</mo><mi>c</mi><msub><mo>∫</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></msub><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int_{\mathbb{R}^n} (-\Delta)^\alpha u(x) \phi(x) dx + \int_{\mathbb{R}^n} \frac{f(x)}{u^{\beta}(x)} \phi(x) dx = c \int_{\mathbb{R}^n} \phi(x) dx </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.2719em;vertical-align:-0.9119em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathbb mtight">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5935em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">Δ</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span></span></span></span><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathbb mtight">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5935em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7751em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05278em;">β</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2719em;vertical-align:-0.9119em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4297em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathbb mtight">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5935em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span></span></p> <p>for all <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo>∈</mo><msubsup><mi>C</mi><mi>c</mi><mi mathvariant="normal">∞</mi></msubsup><mo stretchy="false">(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi \in C^\infty_c(\mathbb{R}^n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">ϕ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">c</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>.</p> <h2><strong>Q: How do we show the existence of solutions to the PDE?</strong></h2> <p>A: We use the Mountain Pass Theorem to show the existence of solutions to the PDE. The Mountain Pass Theorem states that if a functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> satisfies certain conditions, then there exists a solution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span> to the equation <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mrow><mi>inf</mi><mo>⁡</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>X</mi></mrow></msub><msub><mrow><mi>max</mi><mo>⁡</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow></msub><mi>I</mi><mo stretchy="false">(</mo><mi>t</mi><mi>v</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">I(u) = \inf_{v \in X} \max_{t \in [0,1]} I(tv)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">u</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mop"><span class="mop">in<span style="margin-right:0.07778em;">f</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">v</span><span class="mrel mtight">∈</span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1774em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">max</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mrel mtight">∈</span><span class="mopen mtight">[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">1</span><span class="mclose mtight">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mclose">)</span></span></span></span>.</p> <h2><strong>Q: What are the conditions for the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> to satisfy the Mountain Pass Theorem?</strong></h2> <p>A: The functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> must satisfy the following conditions:</p> <ol> <li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">I(0) = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></li> <li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is continuous</li> <li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> satisfies the Palais-Smale condition</li> <li>There exist <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r &gt; 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\delta &gt; 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> such that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>≥</mo><mi>δ</mi></mrow><annotation encoding="application/x-tex">I(u) \geq \delta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord mathnormal">u</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span> for all <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">u \in X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> with <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∥</mi><mi>u</mi><mi mathvariant="normal">∥</mi><mo>=</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">\|u\| = r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∥</span><span class="mord mathnormal">u</span><span class="mord">∥</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></li> </ol> <h2><strong>Q: How do we show that the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> satisfies the Palais-Smale condition?</strong></h2> <p>A: We show that the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> satisfies the Palais-Smale condition by proving that any sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">}</mo><mo>⊂</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\{u_n\} \subset X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> such that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mo stretchy="false">(</mo><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>→</mo><mi mathvariant="normal">∞</mi></mrow><annotation encoding="application/x-tex">I(u_n) \to \infty</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord">∞</span></span></span></span> as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow><annotation encoding="application/x-tex">n \to \infty</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord">∞</span></span></span></span> has a convergent subsequence.</p> <h2><strong>Q: What is the significance of the Palais-Smale condition?</strong></h2> <p>A: The Palais-Smale condition is a necessary condition for the existence of a critical point of a functional. In this case, the Palais-Smale condition is used to show that the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> has a critical point, which corresponds to a solution to the PDE.</p> <h2><strong>Q: What is the uniqueness of solutions to the PDE?</strong></h2> <p>A: The uniqueness of solutions to the PDE is not guaranteed. However, we can show that if the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is strictly convex, then the solution to the PDE is unique.</p> <h2><strong>Q: How do we show that the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is strictly convex?</strong></h2> <p>A: We show that the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is strictly convex by proving that the Hessian matrix of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is positive definite.</p> <h2><strong>Q: What is the significance of the Hessian matrix of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span>?</strong></h2> <p>A: The Hessian matrix of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is used to determine the convexity of the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span>. If the Hessian matrix of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is positive definite, then the functional <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> is strictly convex, which implies that the solution to the PDE is unique.</p> <h2><strong>Q: What are the implications of the results obtained in this article?</strong></h2> <p>A: The results obtained in this article have implications for the study of partial differential equations. The existence and uniqueness of solutions to the PDE are crucial in understanding the behavior of the solution. The results obtained in this article provide a framework for studying the existence and uniqueness of solutions to a class of PDEs.</p> <h2><strong>Q: What are the future directions of research in this area?</strong></h2> <p>A: The future directions of research in this area include:</p> <ol> <li>Studying the existence and uniqueness of solutions to more general classes of PDEs</li> <li>Developing new techniques for proving the existence and uniqueness of solutions to PDEs</li> <li>Applying the results obtained in this article to other areas of mathematics and physics.</li> </ol>