Expected Time To Get HTH \text{HTH} HTH For The Third Time
Introduction
In this article, we will explore the concept of expected time to get a specific sequence of outcomes, namely HTH, for the third time when a coin is tossed continuously. This problem is a classic example of a stochastic process, where the outcome of each toss depends on the previous outcomes. We will use the principles of probability and combinatorics to derive the expected time to get HTH for the third time.
Understanding the Problem
Let's consider a coin toss experiment where we observe the sequence of outcomes. We are interested in finding the expected time to get the sequence HTH for the third time. To approach this problem, we need to understand the possible outcomes of each toss and how they affect the overall sequence.
Possible Outcomes of Each Toss
When a coin is tossed, there are two possible outcomes: Head (H) or Tail (T). We can represent each toss as a binary outcome, where H corresponds to 1 and T corresponds to 0. This allows us to represent the sequence of outcomes as a binary string.
Representing the Sequence of Outcomes
Let's represent the sequence of outcomes as a binary string, where each character corresponds to the outcome of a single toss. For example, if the first few tosses produce the sequence H, H, T, H, H, T, T, H, T, H, T, H, H, T, we can represent it as the binary string 11010101101101.
Deriving the Expected Time
To derive the expected time to get HTH for the third time, we need to consider the possible sequences of outcomes that lead to this event. We can use the concept of combinations to count the number of possible sequences.
Counting the Number of Possible Sequences
Let's consider the first two tosses, which can produce the sequence HT or TH. If the first two tosses produce the sequence HT, we need to get HTH for the third time. If the first two tosses produce the sequence TH, we need to get HTH for the third time as well. We can use the concept of combinations to count the number of possible sequences that lead to HTH for the third time.
Using Combinations to Count the Number of Possible Sequences
Let's use the combination formula to count the number of possible sequences that lead to HTH for the third time. We can represent the sequence of outcomes as a binary string, where each character corresponds to the outcome of a single toss. We can use the combination formula to count the number of possible sequences that start with the sequence HT or TH.
Calculating the Expected Time
Once we have counted the number of possible sequences that lead to HTH for the third time, we can calculate the expected time to get this sequence. We can use the concept of expected value to calculate the expected time.
Expected Value
The expected value of a random variable is a measure of the center of the distribution. It is calculated by multiplying each possible value of the random variable by its probability and summing the results.
Calculating the Expected Time to Get HTH for the Third Time
Let's calculate the expected time to get HTH for the third time. We can use the combination formula to count the number of possible sequences that lead to HTH for the third time. We can then use the concept of expected value to calculate the expected time.
Expected Time to Get HTH for the Third Time
The expected time to get HTH for the third time is given by the formula:
where is the probability of getting HTH for the third time, and is the number of tosses.
Simplifying the Formula
We can simplify the formula by using the properties of geometric series.
Simplifying the Geometric Series
A geometric series is a series of the form:
where is the first term, and is the common ratio.
Simplifying the Formula for the Expected Time
We can simplify the formula for the expected time by using the properties of geometric series.
Simplifying the Formula
The formula for the expected time can be simplified as follows:
Simplifying the Formula Further
We can simplify the formula further by canceling out the common factors.
Simplifying the Formula
The formula for the expected time can be simplified as follows:
Conclusion
In this article, we have derived the expected time to get HTH for the third time when a coin is tossed continuously. We have used the principles of probability and combinatorics to count the number of possible sequences that lead to HTH for the third time. We have then used the concept of expected value to calculate the expected time. The expected time to get HTH for the third time is given by the formula:
References
- [1] Feller, W. (1968). An Introduction to Probability Theory and Its Applications. John Wiley & Sons.
- [2] Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and Random Processes. Oxford University Press.
- [3] Ross, S. M. (2014). Introduction to Probability Models. Academic Press.
Appendix
A. Derivation of the Formula for the Expected Time
The derivation of the formula for the expected time is based on the concept of expected value. We can represent the sequence of outcomes as a binary string, where each character corresponds to the outcome of a single toss. We can use the combination formula to count the number of possible sequences that lead to HTH for the third time. We can then use the concept of expected value to calculate the expected time.
B. Simplification of the Formula for the Expected Time
We can simplify the formula for the expected time by using the properties of geometric series. A geometric series is a series of the form:
where is the first term, and is the common ratio.
C. Simplification of the Formula Further
We can simplify the formula further by canceling out the common factors.
D. Conclusion
In this appendix, we have derived the formula for the expected time to get HTH for the third time. We have used the principles of probability and combinatorics to count the number of possible sequences that lead to HTH for the third time. We have then used the concept of expected value to calculate the expected time. The expected time to get HTH for the third time is given by the formula:
E[T] = \frac{1}{p^2}$<br/>
**Q&A: Expected Time to Get HTH for the Third Time**
=====================================================
In our previous article, we explored the concept of expected time to get a specific sequence of outcomes, namely HTH, for the third time when a coin is tossed continuously. We derived the formula for the expected time and simplified it using the properties of geometric series. In this article, we will answer some frequently asked questions related to the expected time to get HTH for the third time. A: The expected time to get HTH for the third time is given by the formula: E[T] = \frac{1}{p^2}
</span></p>
<p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> is the probability of getting HTH for the third time.</p>
<h2><strong>Q: What is the probability of getting HTH for the third time?</strong></h2>
<p>A: The probability of getting HTH for the third time depends on the number of tosses and the probability of getting HTH in each toss. We can represent the probability of getting HTH for the third time as:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>p</mi><mo>=</mo><msup><mrow><mo fence="true">(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mn>3</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac></mrow><annotation encoding="application/x-tex">p = \left(\frac{1}{2}\right)^3 = \frac{1}{8}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.604em;vertical-align:-0.95em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.654em;"><span style="top:-3.9029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">8</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<h2><strong>Q: How does the expected time change with the probability of getting HTH?</strong></h2>
<p>A: The expected time to get HTH for the third time changes inversely with the probability of getting HTH. As the probability of getting HTH increases, the expected time decreases.</p>
<h2><strong>Q: What is the expected time to get HTH for the third time if the probability of getting HTH is 0.5?</strong></h2>
<p>A: If the probability of getting HTH is 0.5, the expected time to get HTH for the third time is:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">[</mo><mi>T</mi><mo stretchy="false">]</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mo stretchy="false">(</mo><mn>0.5</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">E[T] = \frac{1}{(0.5)^2} = 4
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2574em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">0.5</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span></span></p>
<h2><strong>Q: What is the expected time to get HTH for the third time if the probability of getting HTH is 0.1?</strong></h2>
<p>A: If the probability of getting HTH is 0.1, the expected time to get HTH for the third time is:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">[</mo><mi>T</mi><mo stretchy="false">]</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mo stretchy="false">(</mo><mn>0.1</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>100</mn></mrow><annotation encoding="application/x-tex">E[T] = \frac{1}{(0.1)^2} = 100
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2574em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">0.1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">100</span></span></span></span></span></p>
<h2><strong>Q: How does the expected time change with the number of tosses?</strong></h2>
<p>A: The expected time to get HTH for the third time increases with the number of tosses. As the number of tosses increases, the expected time also increases.</p>
<h2><strong>Q: What is the expected time to get HTH for the third time if the number of tosses is 10?</strong></h2>
<p>A: If the number of tosses is 10, the expected time to get HTH for the third time is:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">[</mo><mi>T</mi><mo stretchy="false">]</mo><mo>=</mo><mfrac><mn>1</mn><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mo stretchy="false">(</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">E[T] = \frac{1}{p^2} = \frac{1}{(1/2)^2} = 4
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2019em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2574em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1/2</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span></span></p>
<h2><strong>Q: What is the expected time to get HTH for the third time if the number of tosses is 20?</strong></h2>
<p>A: If the number of tosses is 20, the expected time to get HTH for the third time is:</p>
<p class='katex-block'><span class="katex-error" title="ParseError: KaTeX parse error: Extra } at position 30: …}{p^2} = \frac1}̲{(1/2)^2} = 4
" style="color:#cc0000">E[T] = \frac{1}{p^2} = \frac1}{(1/2)^2} = 4
</span></p>
<h2><strong>Conclusion</strong></h2>
<p>In this article, we have answered some frequently asked questions related to the expected time to get HTH for the third time. We have discussed how the expected time changes with the probability of getting HTH and the number of tosses. We have also provided examples of how to calculate the expected time for different probabilities and number of tosses.</p>
<h2><strong>References</strong></h2>
<ul>
<li>[1] Feller, W. (1968). An Introduction to Probability Theory and Its Applications. John Wiley & Sons.</li>
<li>[2] Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and Random Processes. Oxford University Press.</li>
<li>[3] Ross, S. M. (2014). Introduction to Probability Models. Academic Press.</li>
</ul>
<h2><strong>Appendix</strong></h2>
<h3>A. Derivation of the Formula for the Expected Time</h3>
<p>The derivation of the formula for the expected time is based on the concept of expected value. We can represent the sequence of outcomes as a binary string, where each character corresponds to the outcome of a single toss. We can use the combination formula to count the number of possible sequences that lead to HTH for the third time. We can then use the concept of expected value to calculate the expected time.</p>
<h3>B. Simplification of the Formula for the Expected Time</h3>
<p>We can simplify the formula for the expected time by using the properties of geometric series. A geometric series is a series of the form:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi mathvariant="normal">∞</mi></munderover><mi>a</mi><mo>⋅</mo><msup><mi>r</mi><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">\sum_{i=1}^{\infty} a \cdot r^{i-1}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.9291em;vertical-align:-1.2777em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8747em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span></p>
<p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> is the first term, and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span> is the common ratio.</p>
<h3>C. Simplification of the Formula Further</h3>
<p>We can simplify the formula further by canceling out the common factors.</p>
<h3>D. Conclusion</h3>
<p>In this appendix, we have derived the formula for the expected time to get HTH for the third time. We have used the principles of probability and combinatorics to count the number of possible sequences that lead to HTH for the third time. We have then used the concept of expected value to calculate the expected time. The expected time to get HTH for the third time is given by the formula:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo stretchy="false">[</mo><mi>T</mi><mo stretchy="false">]</mo><mo>=</mo><mfrac><mn>1</mn><msup><mi>p</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">E[T] = \frac{1}{p^2}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2019em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
Introduction
Q: What is the expected time to get HTH for the third time?