Finding ( P , Q ) (p,q) ( P , Q ) Such That Tan ⁡ X = − 1 3 ( P + Q ) \tan X=-\frac13(p+\sqrt{q}) Tan X = − 3 1 ​ ( P + Q ​ ) , Where 0 ∘ < X < 180 ∘ 0^\circ<x<180^\circ 0 ∘ < X < 18 0 ∘ And Cos ⁡ X + Sin ⁡ X = 1 2 \cos X+\sin X=\frac12 Cos X + Sin X = 2 1 ​

by ADMIN 259 views

Problem Overview

We are given the equation cosx+sinx=12\cos x + \sin x = \frac{1}{2}, where 0<x<1800^\circ < x < 180^\circ. Our goal is to find the values of pp and qq such that tanx=13(p+q)\tan x = -\frac{1}{3}(p + \sqrt{q}).

Squaring Both Sides

To begin solving this problem, we can square both sides of the equation cosx+sinx=12\cos x + \sin x = \frac{1}{2}. This gives us:

cos2x+2sinxcosx+sin2x=14\cos^2 x + 2\sin x \cos x + \sin^2 x = \frac{1}{4}

Using Trigonometric Identities

We can use the trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 to simplify the equation:

1+2sinxcosx=141 + 2\sin x \cos x = \frac{1}{4}

Isolating the Double Angle

Next, we can isolate the double angle sin2x\sin 2x by using the identity sin2x=2sinxcosx\sin 2x = 2\sin x \cos x:

2sin2x=342\sin 2x = -\frac{3}{4}

Solving for sin2x\sin 2x

Dividing both sides by 2, we get:

sin2x=38\sin 2x = -\frac{3}{8}

Finding cos2x\cos 2x

We can use the Pythagorean identity cos22x=1sin22x\cos^2 2x = 1 - \sin^2 2x to find cos2x\cos 2x:

cos22x=1(38)2\cos^2 2x = 1 - \left(-\frac{3}{8}\right)^2

cos22x=1964\cos^2 2x = 1 - \frac{9}{64}

cos22x=5564\cos^2 2x = \frac{55}{64}

Taking the Square Root

Taking the square root of both sides, we get:

cos2x=±5564\cos 2x = \pm \sqrt{\frac{55}{64}}

Using the Quadrant

Since 0<x<1800^\circ < x < 180^\circ, we know that 0<2x<3600^\circ < 2x < 360^\circ. This means that cos2x\cos 2x is positive in the first and fourth quadrants. Therefore, we can take the positive square root:

cos2x=5564\cos 2x = \sqrt{\frac{55}{64}}

Finding tanx\tan x

We can use the identity tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} to find tanx\tan x. However, we are given the equation tanx=13(p+q)\tan x = -\frac{1}{3}(p + \sqrt{q}). We need to find the values of pp and qq.

Using the Half-Angle Formula

We can use the half-angle formula for tangent to find tanx\tan x:

tanx=1cos2xsin2x\tan x = \frac{1 - \cos 2x}{\sin 2x}

Substituting the Values

Substituting the values of cos2x\cos 2x and sin2x\sin 2x, we get:

tanx=1556438\tan x = \frac{1 - \sqrt{\frac{55}{64}}}{-\frac{3}{8}}

Simplifying the Expression

Simplifying the expression, we get:

tanx=13(835564)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \sqrt{\frac{55}{64}}\right)

Rationalizing the Denominator

Rationalizing the denominator, we get:

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

Simplifying the Expression

Simplifying the expression, we get:

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

Simplifying the Expression

Simplifying the expression, we get:

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

tanx=13(642435524)\tan x = -\frac{1}{3}\left(\frac{64}{24} - \frac{3\sqrt{55}}{24}\right)

tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right)

tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right)

\tan x = -\frac{1}{3}\left(\frac{64}{24} - \<br/> # Finding $(p,q)$ such that $\tan x=-\frac13(p+\sqrt{q})$, where $0^\circ<x<180^\circ$ and $\cos x+\sin x=\frac12$

Q&A

Q: What is the given equation and what are we trying to find?

A: The given equation is cosx+sinx=12\cos x + \sin x = \frac{1}{2}, and we are trying to find the values of pp and qq such that tanx=13(p+q)\tan x = -\frac{1}{3}(p + \sqrt{q}).

Q: How do we start solving this problem?

A: We start by squaring both sides of the equation cosx+sinx=12\cos x + \sin x = \frac{1}{2} to get cos2x+2sinxcosx+sin2x=14\cos^2 x + 2\sin x \cos x + \sin^2 x = \frac{1}{4}.

Q: What trigonometric identity can we use to simplify the equation?

A: We can use the trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 to simplify the equation to 1+2sinxcosx=141 + 2\sin x \cos x = \frac{1}{4}.

Q: How do we isolate the double angle?

A: We can isolate the double angle sin2x\sin 2x by using the identity sin2x=2sinxcosx\sin 2x = 2\sin x \cos x to get 2sin2x=342\sin 2x = -\frac{3}{4}.

Q: What is the value of sin2x\sin 2x?

A: Dividing both sides by 2, we get sin2x=38\sin 2x = -\frac{3}{8}.

Q: How do we find cos2x\cos 2x?

A: We can use the Pythagorean identity cos22x=1sin22x\cos^2 2x = 1 - \sin^2 2x to find cos2x\cos 2x.

Q: What is the value of cos2x\cos 2x?

A: Taking the square root of both sides, we get cos2x=±5564\cos 2x = \pm \sqrt{\frac{55}{64}}. Since 0^\circ &lt; 2x &lt; 360^\circ, we know that cos2x\cos 2x is positive, so we take the positive square root: cos2x=5564\cos 2x = \sqrt{\frac{55}{64}}.

Q: How do we find tanx\tan x?

A: We can use the identity tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} to find tanx\tan x. However, we are given the equation tanx=13(p+q)\tan x = -\frac{1}{3}(p + \sqrt{q}). We need to find the values of pp and qq.

Q: How do we use the half-angle formula to find tanx\tan x?

A: We can use the half-angle formula for tangent to find tanx\tan x: tanx=1cos2xsin2x\tan x = \frac{1 - \cos 2x}{\sin 2x}.

Q: What are the values of cos2x\cos 2x and sin2x\sin 2x?

A: We have already found the values of cos2x\cos 2x and sin2x\sin 2x: cos2x=5564\cos 2x = \sqrt{\frac{55}{64}} and sin2x=38\sin 2x = -\frac{3}{8}.

Q: How do we substitute the values of cos2x\cos 2x and sin2x\sin2x into the half-angle formula?

A: Substituting the values of cos2x\cos 2x and sin2x\sin 2x, we get tanx=1556438\tan x = \frac{1 - \sqrt{\frac{55}{64}}}{-\frac{3}{8}}.

Q: How do we simplify the expression for tanx\tan x?

A: Simplifying the expression, we get tanx=13(835564)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \sqrt{\frac{55}{64}}\right).

Q: How do we rationalize the denominator?

A: Rationalizing the denominator, we get tanx=13(83558)\tan x = -\frac{1}{3}\left(\frac{8}{3} - \frac{\sqrt{55}}{8}\right).

Q: How do we simplify the expression for tanx\tan x?

A: Simplifying the expression, we get tanx=13(6435524)\tan x = -\frac{1}{3}\left(\frac{64 - 3\sqrt{55}}{24}\right).

Q: What are the values of pp and qq?

A: Comparing the expression for tanx\tan x with the given equation tanx=13(p+q)\tan x = -\frac{1}{3}(p + \sqrt{q}), we can see that p=6424p = \frac{64}{24} and q=5564q = \frac{55}{64}.

Q: What is the final answer?

A: The final answer is (p,q)=(83,5564)(p,q) = \left(\frac{8}{3}, \frac{55}{64}\right).