Finding UMVUE Of A Poisson Parameter

by ADMIN 37 views

=====================================================

Introduction


In this article, we will discuss finding the uniformly minimum variance unbiased estimator (UMVUE) of a Poisson parameter. We will start by defining the problem and the necessary concepts. Then, we will show that a given estimator is unbiased and find the UMVUE.

Problem Statement


Suppose XPoisson(λ),λ>0X \sim \operatorname{Poisson}(\lambda), \lambda>0. Let θ=λ3e2λ.\theta=\lambda^3e^{-2\lambda}. We are given an estimator S=(1)X1X(X1)(X2)S=(-1)^{X-1}X(X-1)(X-2) and we need to show that it is an unbiased estimator of θ\theta. Then, we will find the UMVUE of θ\theta.

Part a: Showing that S is an unbiased estimator of θ


To show that SS is an unbiased estimator of θ\theta, we need to show that E[S]=θE[S] = \theta.

Derivation of E[S]


We can derive the expected value of SS as follows:

E[S]=E[(1)X1X(X1)(X2)]E[S] = E[(-1)^{X-1}X(X-1)(X-2)]

Using the properties of the Poisson distribution, we can write:

E[S]=x=3(1)x1x(x1)(x2)eλλxx!E[S] = \sum_{x=3}^{\infty} (-1)^{x-1} x(x-1)(x-2) \frac{e^{-\lambda} \lambda^x}{x!}

Simplifying the expression, we get:

E[S]=x=3(1)x1eλλx(x3)!E[S] = \sum_{x=3}^{\infty} (-1)^{x-1} \frac{e^{-\lambda} \lambda^x}{(x-3)!}

Using the binomial theorem, we can rewrite the expression as:

E[S]=eλx=3(1)x1λx(x3)!E[S] = e^{-\lambda} \sum_{x=3}^{\infty} (-1)^{x-1} \frac{\lambda^x}{(x-3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that \sum_{x=0}^{\infty} \fraclambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Simplifying the expression, we get:

E[S]=eλx=0(1)xλx+3(x+3)!E[S] = e^{-\lambda} \sum_{x=0}^{\infty} (-1)^{x} \frac{\lambda^{x+3}}{(x+3)!}

Now, we can use the fact that x=0λxx!=eλ\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda} to rewrite the expression as:

E[S] = e^{-\lambda} \sum_{x=0<br/> # Finding UMVUE of a Poisson parameter =====================================================

Q&A


Q: What is the UMVUE of a Poisson parameter?

A: The UMVUE of a Poisson parameter is the estimator that has the lowest variance among all unbiased estimators.

Q: What is the relationship between the UMVUE and the estimator S?

A: The estimator S is an unbiased estimator of the Poisson parameter, and it is also the UMVUE of the parameter.

Q: How do we find the UMVUE of a Poisson parameter?

A: To find the UMVUE of a Poisson parameter, we need to find an unbiased estimator of the parameter and then show that it has the lowest variance among all unbiased estimators.

Q: What is the formula for the UMVUE of a Poisson parameter?

A: The formula for the UMVUE of a Poisson parameter is given by:

θ^=X(X1)(X2)e2X</span></p><h3>Q:HowdoweshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators?</h3><p>A:ToshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators,weneedtousetheRaoBlackwelltheoremandtheLehmannScheffeˊtheorem.</p><h3>Q:WhatistheRaoBlackwelltheorem?</h3><p>A:TheRaoBlackwelltheoremstatesthatifwehaveanunbiasedestimatorofaparameterandwecanfindasufficientstatisticfortheparameter,thentheestimatorthatisafunctionofthesufficientstatisticisalsounbiasedandhasalowervariance.</p><h3>Q:WhatistheLehmannScheffeˊtheorem?</h3><p>A:TheLehmannScheffeˊtheoremstatesthatifwehaveanunbiasedestimatorofaparameterandwecanfindacompletesufficientstatisticfortheparameter,thentheestimatorthatisafunctionofthecompletesufficientstatisticisalsounbiasedandhasthelowestvarianceamongallunbiasedestimators.</p><h3>Q:HowdowefindthecompletesufficientstatisticforthePoissonparameter?</h3><p>A:TofindthecompletesufficientstatisticforthePoissonparameter,weneedtousethefactorizationcriterion.</p><h3>Q:Whatisthefactorizationcriterion?</h3><p>A:Thefactorizationcriterionstatesthatastatisticissufficientforaparameterifandonlyifthejointprobabilitydensityfunctionofthesamplecanbefactoredintotwofunctions,onethatdependsonlyontheparameterandthestatistic,andtheotherthatdependsonlyonthesample.</p><h3>Q:HowdoweusethefactorizationcriteriontofindthecompletesufficientstatisticforthePoissonparameter?</h3><p>A:TousethefactorizationcriteriontofindthecompletesufficientstatisticforthePoissonparameter,weneedtowritethejointprobabilitydensityfunctionofthesampleintheform:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mi>f</mi><mostretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><moseparator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><moseparator="true">,</mo><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><moseparator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><moseparator="true">;</mo><mi>λ</mi><mostretchy="false">)</mo><mo>=</mo><mi>g</mi><mostretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><moseparator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><moseparator="true">,</mo><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><moseparator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><moseparator="true">;</mo><mi>λ</mi><mostretchy="false">)</mo><mi>h</mi><mostretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><moseparator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><moseparator="true">,</mo><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><mimathvariant="normal">.</mi><moseparator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">f(x1,x2,...,xn;λ)=g(x1,x2,...,xn;λ)h(x1,x2,...,xn)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal"style="marginright:0.10764em;">f</span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord">...</span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">;</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mordmathnormal">λ</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">g</span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord">...</span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">;</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mordmathnormal">λ</span><spanclass="mclose">)</span><spanclass="mordmathnormal">h</span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord">...</span><spanclass="mpunct">,</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mclose">)</span></span></span></span></span></p><p>wheregisafunctionthatdependsonlyontheparameterandthestatistic,andhisafunctionthatdependsonlyonthesample.</p><h3>Q:WhatisthecompletesufficientstatisticforthePoissonparameter?</h3><p>A:ThecompletesufficientstatisticforthePoissonparameterisgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mi>T</mi><mo>=</mo><munderover><mo></mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>X</mi><mi>i</mi></msub></mrow><annotationencoding="application/xtex">T=i=1nXi</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.9291em;verticalalign:1.2777em;"></span><spanclass="mopoplimits"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.6514em;"><spanstyle="top:1.8723em;marginleft:0em;"><spanclass="pstrut"style="height:3.05em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">i</span><spanclass="mrelmtight">=</span><spanclass="mordmtight">1</span></span></span></span><spanstyle="top:3.05em;"><spanclass="pstrut"style="height:3.05em;"></span><span><spanclass="mopopsymbollargeop"></span></span></span><spanstyle="top:4.3em;marginleft:0em;"><spanclass="pstrut"style="height:3.05em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:1.2777em;"><span></span></span></span></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.07847em;">X</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3117em;"><spanstyle="top:2.55em;marginleft:0.0785em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">i</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p><h3>Q:HowdoweusethecompletesufficientstatistictofindtheUMVUEofthePoissonparameter?</h3><p>A:TousethecompletesufficientstatistictofindtheUMVUEofthePoissonparameter,weneedtofindanunbiasedestimatoroftheparameterthatisafunctionofthecompletesufficientstatistic.</p><h3>Q:WhatistheUMVUEofthePoissonparameter?</h3><p>A:TheUMVUEofthePoissonparameterisgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><moveraccent="true"><mi>θ</mi><mo></mo></mover><mo>=</mo><mfrac><mrow><mi>T</mi><mostretchy="false">(</mo><mi>T</mi><mo></mo><mn>1</mn><mostretchy="false">)</mo><mostretchy="false">(</mo><mi>T</mi><mo></mo><mn>2</mn><mostretchy="false">)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>T</mi></mrow></msup></mfrac></mrow><annotationencoding="application/xtex">θ^=T(T1)(T2)e2T</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9579em;"></span><spanclass="mordaccent"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.9579em;"><spanstyle="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">θ</span></span><spanstyle="top:3.2634em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="accentbody"style="left:0.1667em;"><spanclass="mord"></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.113em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.427em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord"><spanclass="mordmathnormal">e</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.7673em;"><spanstyle="top:2.989em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span><spanclass="mordmathnormalmtight"style="marginright:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">1</span><spanclass="mclose">)</span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">2</span><spanclass="mclose">)</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><h3>Q:HowdoweshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators?</h3><p>A:ToshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators,weneedtousetheRaoBlackwelltheoremandtheLehmannScheffeˊtheorem.</p><h3>Q:WhatistheRaoBlackwelltheorem?</h3><p>A:TheRaoBlackwelltheoremstatesthatifwehaveanunbiasedestimatorofaparameterandwecanfindasufficientstatisticfortheparameter,thentheestimatorthatisafunctionofthesufficientstatisticisalsounbiasedandhasalowervariance.</p><h3>Q:WhatistheLehmannScheffeˊtheorem?</h3><p>A:TheLehmannScheffeˊtheoremstatesthatifwehaveanunbiasedestimatorofaparameterandwecanfindacompletesufficientstatisticfortheparameter,thentheestimatorthatisafunctionofthecompletesufficientstatisticisalsounbiasedandhasthelowestvarianceamongallunbiasedestimators.</p><h3>Q:HowdoweusetheRaoBlackwelltheoremandtheLehmannScheffeˊtheoremtoshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators?</h3><p>A:TousetheRaoBlackwelltheoremandtheLehmannScheffeˊtheoremtoshowthattheUMVUEhasthelowestvarianceamongallunbiasedestimators,weneedtoshowthattheUMVUEisafunctionofthecompletesufficientstatisticandthatithasthelowestvarianceamongallunbiasedestimators.</p><h3>Q:Whatisthefinalanswer?</h3><p>A:ThefinalansweristhattheUMVUEofthePoissonparameterisgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><moveraccent="true"><mi>θ</mi><mo></mo></mover><mo>=</mo><mfrac><mrow><mi>T</mi><mostretchy="false">(</mo><mi>T</mi><mo></mo><mn>1</mn><mostretchy="false">)</mo><mostretchy="false">(</mo><mi>T</mi><mo></mo><mn>2</mn><mostretchy="false">)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>T</mi></mrow></msup></mfrac></mrow><annotationencoding="application/xtex">θ^=T(T1)(T2)e2T</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9579em;"></span><spanclass="mordaccent"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.9579em;"><spanstyle="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mordmathnormal"style="marginright:0.02778em;">θ</span></span><spanstyle="top:3.2634em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="accentbody"style="left:0.1667em;"><spanclass="mord"></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.113em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.427em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord"><spanclass="mordmathnormal">e</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.7673em;"><spanstyle="top:2.989em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span><spanclass="mordmathnormalmtight"style="marginright:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">1</span><spanclass="mclose">)</span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.13889em;">T</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">2</span><spanclass="mclose">)</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span></span></p><p>ThisestimatorhasthelowestvarianceamongallunbiasedestimatorsandisthereforetheUMVUEofthePoissonparameter.</p>\hat{\theta} = \frac{X(X-1)(X-2)}{e^{2X}} </span></p> <h3>Q: How do we show that the UMVUE has the lowest variance among all unbiased estimators?</h3> <p>A: To show that the UMVUE has the lowest variance among all unbiased estimators, we need to use the Rao-Blackwell theorem and the Lehmann-Scheffé theorem.</p> <h3>Q: What is the Rao-Blackwell theorem?</h3> <p>A: The Rao-Blackwell theorem states that if we have an unbiased estimator of a parameter and we can find a sufficient statistic for the parameter, then the estimator that is a function of the sufficient statistic is also unbiased and has a lower variance.</p> <h3>Q: What is the Lehmann-Scheffé theorem?</h3> <p>A: The Lehmann-Scheffé theorem states that if we have an unbiased estimator of a parameter and we can find a complete sufficient statistic for the parameter, then the estimator that is a function of the complete sufficient statistic is also unbiased and has the lowest variance among all unbiased estimators.</p> <h3>Q: How do we find the complete sufficient statistic for the Poisson parameter?</h3> <p>A: To find the complete sufficient statistic for the Poisson parameter, we need to use the factorization criterion.</p> <h3>Q: What is the factorization criterion?</h3> <p>A: The factorization criterion states that a statistic is sufficient for a parameter if and only if the joint probability density function of the sample can be factored into two functions, one that depends only on the parameter and the statistic, and the other that depends only on the sample.</p> <h3>Q: How do we use the factorization criterion to find the complete sufficient statistic for the Poisson parameter?</h3> <p>A: To use the factorization criterion to find the complete sufficient statistic for the Poisson parameter, we need to write the joint probability density function of the sample in the form:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo separator="true">;</mo><mi>λ</mi><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo separator="true">;</mo><mi>λ</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x_1, x_2, ..., x_n; \lambda) = g(x_1, x_2, ..., x_n; \lambda)h(x_1, x_2, ..., x_n) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></p> <p>where g is a function that depends only on the parameter and the statistic, and h is a function that depends only on the sample.</p> <h3>Q: What is the complete sufficient statistic for the Poisson parameter?</h3> <p>A: The complete sufficient statistic for the Poisson parameter is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>T</mi><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>X</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">T = \sum_{i=1}^n X_i </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9291em;vertical-align:-1.2777em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p> <h3>Q: How do we use the complete sufficient statistic to find the UMVUE of the Poisson parameter?</h3> <p>A: To use the complete sufficient statistic to find the UMVUE of the Poisson parameter, we need to find an unbiased estimator of the parameter that is a function of the complete sufficient statistic.</p> <h3>Q: What is the UMVUE of the Poisson parameter?</h3> <p>A: The UMVUE of the Poisson parameter is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>θ</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mi>T</mi><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>T</mi></mrow></msup></mfrac></mrow><annotation encoding="application/x-tex">\hat{\theta} = \frac{T(T-1)(T-2)}{e^{2T}} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9579em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9579em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span><span style="top:-3.2634em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.113em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7673em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p> <h3>Q: How do we show that the UMVUE has the lowest variance among all unbiased estimators?</h3> <p>A: To show that the UMVUE has the lowest variance among all unbiased estimators, we need to use the Rao-Blackwell theorem and the Lehmann-Scheffé theorem.</p> <h3>Q: What is the Rao-Blackwell theorem?</h3> <p>A: The Rao-Blackwell theorem states that if we have an unbiased estimator of a parameter and we can find a sufficient statistic for the parameter, then the estimator that is a function of the sufficient statistic is also unbiased and has a lower variance.</p> <h3>Q: What is the Lehmann-Scheffé theorem?</h3> <p>A: The Lehmann-Scheffé theorem states that if we have an unbiased estimator of a parameter and we can find a complete sufficient statistic for the parameter, then the estimator that is a function of the complete sufficient statistic is also unbiased and has the lowest variance among all unbiased estimators.</p> <h3>Q: How do we use the Rao-Blackwell theorem and the Lehmann-Scheffé theorem to show that the UMVUE has the lowest variance among all unbiased estimators?</h3> <p>A: To use the Rao-Blackwell theorem and the Lehmann-Scheffé theorem to show that the UMVUE has the lowest variance among all unbiased estimators, we need to show that the UMVUE is a function of the complete sufficient statistic and that it has the lowest variance among all unbiased estimators.</p> <h3>Q: What is the final answer?</h3> <p>A: The final answer is that the UMVUE of the Poisson parameter is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>θ</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mi>T</mi><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>T</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>T</mi></mrow></msup></mfrac></mrow><annotation encoding="application/x-tex">\hat{\theta} = \frac{T(T-1)(T-2)}{e^{2T}} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9579em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9579em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span><span style="top:-3.2634em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.113em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7673em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p> <p>This estimator has the lowest variance among all unbiased estimators and is therefore the UMVUE of the Poisson parameter.</p>