
Introduction
In algebraic geometry, the study of symmetric products of surfaces has been a topic of interest for many years. The symmetric product of a surface S, denoted by S(n), is a new surface obtained by identifying points on S that are separated by a divisor of degree n. In this article, we will focus on calculating the first Betti number, b1(S(n)), of the n−th symmetric product of a smooth projective surface S. This calculation is essential in understanding the topology of the symmetric product and its applications in various areas of mathematics.
Background
To begin with, let's recall some basic definitions and concepts. A smooth projective surface S is a two-dimensional complex manifold that is projective, meaning it can be embedded in a projective space. The Betti numbers, denoted by bi(S), are topological invariants that describe the number of holes in the surface. The first Betti number, b1(S), is particularly important as it measures the number of one-dimensional holes, or loops, in the surface.
The symmetric product S(n) is a new surface obtained by identifying points on S that are separated by a divisor of degree n. This means that if two points P and Q on S are separated by a divisor of degree n, then they are identified in S(n). The symmetric product is a way of "gluing" together points on the surface, creating a new surface with a different topology.
Calculating the First Betti Number
To calculate the first Betti number of the symmetric product, we need to use the following formula:
b1(S(n))=b1(S)+nb0(S)
where b0(S) is the zeroth Betti number of the surface, which measures the number of connected components of the surface.
Understanding the Formula
Let's break down the formula and understand what each term represents. The first term, b1(S), is the first Betti number of the original surface S. This measures the number of one-dimensional holes, or loops, in the surface. The second term, nb0(S), represents the number of new loops created by identifying points on the surface. The factor of n represents the degree of the divisor that separates the points, and b0(S) measures the number of connected components of the surface.
Example
To illustrate the formula, let's consider a simple example. Suppose we have a surface S with a single connected component and a single loop, so b1(S)=1 and b0(S)=1. If we take the symmetric product S(n), then the number of new loops created is n, so nb0(S)=n. Therefore, the first Betti number of the symmetric product is:
b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) = 1 + n
This means that the symmetric product S(n) has n+1 one-dimensional holes, or loops.
Conclusion

In this article, we have calculated the first Betti number of the symmetric product of a smooth projective surface. The formula b1(S(n))=b1(S)+nb0(S) provides a way to calculate the number of one-dimensional holes, or loops, in the symmetric product. This calculation is essential in understanding the topology of the symmetric product and its applications in various areas of mathematics.
Future Work
There are many directions for future research in this area. One possible direction is to study the higher Betti numbers of the symmetric product, which would provide more information about the topology of the surface. Another direction is to explore the applications of the symmetric product in other areas of mathematics, such as algebraic geometry and topology.
References
- [1] Fulton, W. (1984). Intersection theory. Springer-Verlag.
- [2] Hartshorne, R. (1977). Algebraic geometry. Springer-Verlag.
- [3] Mumford, D. (1976). Algebraic geometry I: Complex projective varieties. Springer-Verlag.
Appendix
For the sake of completeness, we include here the proof of the formula b1(S(n))=b1(S)+nb0(S).
Proof:
Let S be a smooth projective surface and S(n) be its symmetric product. We need to show that:
b1(S(n))=b1(S)+nb0(S)</span></p><p>Todothis,wewillusethefollowingfact:</p><ul><li>If<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotationencoding="application/x−tex">X</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.07847em;">X</span></span></span></span>and<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi></mrow><annotationencoding="application/x−tex">Y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.22222em;">Y</span></span></span></span>aretwospaces,thenthefirstBettinumberoftheproductspace<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotationencoding="application/x−tex">X×Y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.7667em;vertical−align:−0.0833em;"></span><spanclass="mordmathnormal"style="margin−right:0.07847em;">X</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.22222em;">Y</span></span></span></span>isgivenby:</li></ul><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>X</mi><mostretchy="false">)</mo><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>Y</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(X×Y)=b1(X)+b1(Y)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.07847em;">X</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal"style="margin−right:0.22222em;">Y</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.07847em;">X</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.22222em;">Y</span><spanclass="mclose">)</span></span></span></span></span></p><p>Usingthisfact,wecanwrite:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(S(n))=b1(S×⋯×S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6667em;vertical−align:−0.0833em;"></span><spanclass="minner">⋯</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>appears<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/x−tex">n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>timesintheproduct.Sinceeachcopyof<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>hasasingleconnectedcomponent,wehave:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/x−tex">b0(S)=1</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span></span></p><p>Therefore,wecanwrite:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(S(n))=b1(S×⋯×S)=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6667em;vertical−align:−0.0833em;"></span><spanclass="minner">⋯</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><h2><strong>Q:Whatisthesymmetricproductofasurface?</strong></h2><p>A:Thesymmetricproductofasurface<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>,denotedby<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/x−tex">S(n)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>,isanewsurfaceobtainedbyidentifyingpointson<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>thatareseparatedbyadivisorofdegree<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/x−tex">n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>.Thismeansthatiftwopoints<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotationencoding="application/x−tex">P</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.13889em;">P</span></span></span></span>and<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotationencoding="application/x−tex">Q</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8778em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal">Q</span></span></span></span>on<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>areseparatedbyadivisorofdegree<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/x−tex">n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>,thentheyareidentifiedin<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/x−tex">S(n)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:WhatisthefirstBettinumberofasurface?</strong></h2><p>A:ThefirstBettinumberofasurface<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>,denotedby<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>,isatopologicalinvariantthatmeasuresthenumberofone−dimensionalholes,orloops,inthesurface.</p><h2><strong>Q:HowisthefirstBettinumberofthesymmetricproductrelatedtothefirstBettinumberoftheoriginalsurface?</strong></h2><p>A:ThefirstBettinumberofthesymmetricproduct<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/x−tex">S(n)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>isgivenbytheformula:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(S(n))=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b0(S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>isthezerothBettinumberofthesurface,whichmeasuresthenumberofconnectedcomponentsofthesurface.</p><h2><strong>Q:Whatisthesignificanceoftheformula<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/x−tex">b1(S(n))=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.138em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>?</strong></h2><p>A:Theformulaprovidesawaytocalculatethenumberofone−dimensionalholes,orloops,inthesymmetricproductofasurface.Thisisessentialinunderstandingthetopologyofthesymmetricproductanditsapplicationsinvariousareasofmathematics.</p><h2><strong>Q:Canyougiveanexampleofhowtousetheformula?</strong></h2><p>A:Supposewehaveasurface<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/x−tex">S</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span></span></span></span>withasingleconnectedcomponentandasingleloop,so<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/x−tex">b1(S)=1</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>and<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/x−tex">b0(S)=1</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>.Ifwetakethesymmetricproduct<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/x−tex">S(n)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>,thenthenumberofnewloopscreatedis<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/x−tex">n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>,so<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mi>n</mi></mrow><annotationencoding="application/x−tex">nb0(S)=n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>.Therefore,thefirstBettinumberofthesymmetricproductis:</p><pclass=′katex−block′><spanclass="katex−display"><spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>+</mo><mi>n</mi></mrow><annotationencoding="application/x−tex">b1(S(n))=b1(S)+nb0(S)=1+n</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:−3.113em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;vertical−align:−0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:−2.55em;margin−left:0em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.7278em;vertical−align:−0.0833em;"></span><spanclass="mord">1</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span></span></p><p>Thismeansthatthesymmetricproduct<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/x−tex">S(n)</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>has<spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotationencoding="application/x−tex">n+1</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6667em;vertical−align:−0.0833em;"></span><spanclass="mordmathnormal">n</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>one−dimensionalholes,orloops.</p><h2><strong>Q:Whataresomeapplicationsofthesymmetricproductinmathematics?</strong></h2><p>A:Thesymmetricproducthasapplicationsinvariousareasofmathematics,includingalgebraicgeometry,topology,andnumbertheory.Forexample,itcanbeusedtostudythetopologyofalgebraiccurvesandsurfaces,andtocalculatethenumberofsolutionstocertainalgebraicequations.</p><h2><strong>Q:Whataresomeopenproblemsinthestudyofthesymmetricproduct?</strong></h2><p>A:Therearemanyopenproblemsinthestudyofthesymmetricproduct,includingthecalculationofhigherBettinumbersandthestudyofthetopologyofthesymmetricproductinhigherdimensions.</p><h2><strong>Q:Whatresourcesareavailableforlearningmoreaboutthesymmetricproduct?</strong></h2><p>A:Therearemanyresourcesforlearningmoreaboutthesymmetricproduct,includingtextbooks,researchpapers,andonlinecourses.Somerecommendedresourcesinclude:</p><ul><li>Fulton,W.(1984).Intersectiontheory.Springer−Verlag.</li><li>Hartshorne,R.(1977).Algebraicgeometry.Springer−Verlag.</li><li>Mumford,D.(1976).AlgebraicgeometryI:Complexprojectivevarieties.Springer−Verlag.</li></ul><h2><strong>Q:HowcanIgetinvolvedinresearchonthesymmetricproduct?</strong></h2><p>A:Ifyouareinterestedingettinginvolvedinresearchonthesymmetricproduct,thereareseveralwaystodoso.Youcan:</p><ul><li>Contactresearchersinthefieldandaskiftheyhaveanyopeningsforgraduatestudentsorpostdoctoralresearchers.</li><li>Lookforresearchopportunitiesatuniversitiesorresearchinstitutions.</li><li>Attendconferencesandworkshopsonalgebraicgeometryandtopologytolearnmoreaboutthelatestdevelopmentsinthefield.</li></ul><h2><strong>Q:Whataresomepotentialapplicationsofthesymmetricproductinreal−worldproblems?</strong></h2><p>A:Thesymmetricproducthaspotentialapplicationsinvariousreal−worldproblems,including:</p><ul><li>Computervision:Thesymmetricproductcanbeusedtostudythetopologyofimagesandtodevelopnewalgorithmsforimageprocessingandrecognition.</li><li>Materialsscience:Thesymmetricproductcanbeusedtostudythetopologyofmaterialsandtodevelopnewmaterialswithspecificproperties.</li><li>Biology:Thesymmetricproductcanbeusedtostudythetopologyofbiologicalsystemsandtodevelopnewmodelsforthebehaviorofbiologicalsystems.</li></ul><p>Thesearejustafewexamplesofthemanypotentialapplicationsofthesymmetricproduct.Thestudyofthesymmetricproductisarapidlyevolvingfield,andnewapplicationsarebeingdiscoveredallthetime.</p>