First Betti Number Of Symmetric Product Of Surfaces.

by ADMIN 53 views

Introduction

In algebraic geometry, the study of symmetric products of surfaces has been a topic of interest for many years. The symmetric product of a surface SS, denoted by S(n)S^{(n)}, is a new surface obtained by identifying points on SS that are separated by a divisor of degree nn. In this article, we will focus on calculating the first Betti number, b1(S(n))b_{1}(S^{(n)}), of the nthn-th symmetric product of a smooth projective surface SS. This calculation is essential in understanding the topology of the symmetric product and its applications in various areas of mathematics.

Background

To begin with, let's recall some basic definitions and concepts. A smooth projective surface SS is a two-dimensional complex manifold that is projective, meaning it can be embedded in a projective space. The Betti numbers, denoted by bi(S)b_{i}(S), are topological invariants that describe the number of holes in the surface. The first Betti number, b1(S)b_{1}(S), is particularly important as it measures the number of one-dimensional holes, or loops, in the surface.

The symmetric product S(n)S^{(n)} is a new surface obtained by identifying points on SS that are separated by a divisor of degree nn. This means that if two points PP and QQ on SS are separated by a divisor of degree nn, then they are identified in S(n)S^{(n)}. The symmetric product is a way of "gluing" together points on the surface, creating a new surface with a different topology.

Calculating the First Betti Number

To calculate the first Betti number of the symmetric product, we need to use the following formula:

b1(S(n))=b1(S)+nb0(S)b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S)

where b0(S)b_{0}(S) is the zeroth Betti number of the surface, which measures the number of connected components of the surface.

Understanding the Formula

Let's break down the formula and understand what each term represents. The first term, b1(S)b_{1}(S), is the first Betti number of the original surface SS. This measures the number of one-dimensional holes, or loops, in the surface. The second term, nb0(S)nb_{0}(S), represents the number of new loops created by identifying points on the surface. The factor of nn represents the degree of the divisor that separates the points, and b0(S)b_{0}(S) measures the number of connected components of the surface.

Example

To illustrate the formula, let's consider a simple example. Suppose we have a surface SS with a single connected component and a single loop, so b1(S)=1b_{1}(S) = 1 and b0(S)=1b_{0}(S) = 1. If we take the symmetric product S(n)S^{(n)}, then the number of new loops created is nn, so nb0(S)=nnb_{0}(S) = n. Therefore, the first Betti number of the symmetric product is:

b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) = 1 + n

This means that the symmetric product S(n)S^{(n)} has n+1n+1 one-dimensional holes, or loops.

Conclusion

In this article, we have calculated the first Betti number of the symmetric product of a smooth projective surface. The formula b1(S(n))=b1(S)+nb0(S)b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) provides a way to calculate the number of one-dimensional holes, or loops, in the symmetric product. This calculation is essential in understanding the topology of the symmetric product and its applications in various areas of mathematics.

Future Work

There are many directions for future research in this area. One possible direction is to study the higher Betti numbers of the symmetric product, which would provide more information about the topology of the surface. Another direction is to explore the applications of the symmetric product in other areas of mathematics, such as algebraic geometry and topology.

References

  • [1] Fulton, W. (1984). Intersection theory. Springer-Verlag.
  • [2] Hartshorne, R. (1977). Algebraic geometry. Springer-Verlag.
  • [3] Mumford, D. (1976). Algebraic geometry I: Complex projective varieties. Springer-Verlag.

Appendix

For the sake of completeness, we include here the proof of the formula b1(S(n))=b1(S)+nb0(S)b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S).

Proof:

Let SS be a smooth projective surface and S(n)S^{(n)} be its symmetric product. We need to show that:

b1(S(n))=b1(S)+nb0(S)</span></p><p>Todothis,wewillusethefollowingfact:</p><ul><li>If<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotationencoding="application/xtex">X</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.07847em;">X</span></span></span></span>and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi></mrow><annotationencoding="application/xtex">Y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.22222em;">Y</span></span></span></span>aretwospaces,thenthefirstBettinumberoftheproductspace<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotationencoding="application/xtex">X×Y</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7667em;verticalalign:0.0833em;"></span><spanclass="mordmathnormal"style="marginright:0.07847em;">X</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.22222em;">Y</span></span></span></span>isgivenby:</li></ul><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>X</mi><mostretchy="false">)</mo><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>Y</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(X×Y)=b1(X)+b1(Y)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.07847em;">X</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal"style="marginright:0.22222em;">Y</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.07847em;">X</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.22222em;">Y</span><spanclass="mclose">)</span></span></span></span></span></p><p>Usingthisfact,wecanwrite:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mo>×</mo><mo></mo><mo>×</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(S(n))=b1(S××S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6667em;verticalalign:0.0833em;"></span><spanclass="minner"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>appears<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/xtex">n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>timesintheproduct.Sinceeachcopyof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>hasasingleconnectedcomponent,wehave:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/xtex">b0(S)=1</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span></span></p><p>Therefore,wecanwrite:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mo>×</mo><mo></mo><mo>×</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(S(n))=b1(S××S)=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6667em;verticalalign:0.0833em;"></span><spanclass="minner"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">×</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><h2><strong>Q:Whatisthesymmetricproductofasurface?</strong></h2><p>A:Thesymmetricproductofasurface<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>,denotedby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/xtex">S(n)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>,isanewsurfaceobtainedbyidentifyingpointson<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>thatareseparatedbyadivisorofdegree<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/xtex">n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>.Thismeansthatiftwopoints<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotationencoding="application/xtex">P</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.13889em;">P</span></span></span></span>and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotationencoding="application/xtex">Q</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8778em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal">Q</span></span></span></span>on<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>areseparatedbyadivisorofdegree<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/xtex">n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>,thentheyareidentifiedin<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/xtex">S(n)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>.</p><h2><strong>Q:WhatisthefirstBettinumberofasurface?</strong></h2><p>A:ThefirstBettinumberofasurface<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>,denotedby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>,isatopologicalinvariantthatmeasuresthenumberofonedimensionalholes,orloops,inthesurface.</p><h2><strong>Q:HowisthefirstBettinumberofthesymmetricproductrelatedtothefirstBettinumberoftheoriginalsurface?</strong></h2><p>A:ThefirstBettinumberofthesymmetricproduct<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/xtex">S(n)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>isgivenbytheformula:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(S(n))=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b0(S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>isthezerothBettinumberofthesurface,whichmeasuresthenumberofconnectedcomponentsofthesurface.</p><h2><strong>Q:Whatisthesignificanceoftheformula<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">b1(S(n))=b1(S)+nb0(S)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.138em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span></span></span></span>?</strong></h2><p>A:Theformulaprovidesawaytocalculatethenumberofonedimensionalholes,orloops,inthesymmetricproductofasurface.Thisisessentialinunderstandingthetopologyofthesymmetricproductanditsapplicationsinvariousareasofmathematics.</p><h2><strong>Q:Canyougiveanexampleofhowtousetheformula?</strong></h2><p>A:Supposewehaveasurface<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>withasingleconnectedcomponentandasingleloop,so<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/xtex">b1(S)=1</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotationencoding="application/xtex">b0(S)=1</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>.Ifwetakethesymmetricproduct<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/xtex">S(n)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>,thenthenumberofnewloopscreatedis<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/xtex">n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>,so<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mi>n</mi></mrow><annotationencoding="application/xtex">nb0(S)=n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>.Therefore,thefirstBettinumberofthesymmetricproductis:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup><mostretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mostretchy="false">(</mo><mi>S</mi><mostretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>+</mo><mi>n</mi></mrow><annotationencoding="application/xtex">b1(S(n))=b1(S)+nb0(S)=1+n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.188em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.938em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mordmathnormal">n</span><spanclass="mord"><spanclass="mordmathnormal">b</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">0</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord">1</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span></span></p><p>Thismeansthatthesymmetricproduct<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mostretchy="false">(</mo><mi>n</mi><mostretchy="false">)</mo></mrow></msup></mrow><annotationencoding="application/xtex">S(n)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.888em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.888em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mopenmtight">(</span><spanclass="mordmathnormalmtight">n</span><spanclass="mclosemtight">)</span></span></span></span></span></span></span></span></span></span></span></span>has<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotationencoding="application/xtex">n+1</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6667em;verticalalign:0.0833em;"></span><spanclass="mordmathnormal">n</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">1</span></span></span></span>onedimensionalholes,orloops.</p><h2><strong>Q:Whataresomeapplicationsofthesymmetricproductinmathematics?</strong></h2><p>A:Thesymmetricproducthasapplicationsinvariousareasofmathematics,includingalgebraicgeometry,topology,andnumbertheory.Forexample,itcanbeusedtostudythetopologyofalgebraiccurvesandsurfaces,andtocalculatethenumberofsolutionstocertainalgebraicequations.</p><h2><strong>Q:Whataresomeopenproblemsinthestudyofthesymmetricproduct?</strong></h2><p>A:Therearemanyopenproblemsinthestudyofthesymmetricproduct,includingthecalculationofhigherBettinumbersandthestudyofthetopologyofthesymmetricproductinhigherdimensions.</p><h2><strong>Q:Whatresourcesareavailableforlearningmoreaboutthesymmetricproduct?</strong></h2><p>A:Therearemanyresourcesforlearningmoreaboutthesymmetricproduct,includingtextbooks,researchpapers,andonlinecourses.Somerecommendedresourcesinclude:</p><ul><li>Fulton,W.(1984).Intersectiontheory.SpringerVerlag.</li><li>Hartshorne,R.(1977).Algebraicgeometry.SpringerVerlag.</li><li>Mumford,D.(1976).AlgebraicgeometryI:Complexprojectivevarieties.SpringerVerlag.</li></ul><h2><strong>Q:HowcanIgetinvolvedinresearchonthesymmetricproduct?</strong></h2><p>A:Ifyouareinterestedingettinginvolvedinresearchonthesymmetricproduct,thereareseveralwaystodoso.Youcan:</p><ul><li>Contactresearchersinthefieldandaskiftheyhaveanyopeningsforgraduatestudentsorpostdoctoralresearchers.</li><li>Lookforresearchopportunitiesatuniversitiesorresearchinstitutions.</li><li>Attendconferencesandworkshopsonalgebraicgeometryandtopologytolearnmoreaboutthelatestdevelopmentsinthefield.</li></ul><h2><strong>Q:Whataresomepotentialapplicationsofthesymmetricproductinrealworldproblems?</strong></h2><p>A:Thesymmetricproducthaspotentialapplicationsinvariousrealworldproblems,including:</p><ul><li>Computervision:Thesymmetricproductcanbeusedtostudythetopologyofimagesandtodevelopnewalgorithmsforimageprocessingandrecognition.</li><li>Materialsscience:Thesymmetricproductcanbeusedtostudythetopologyofmaterialsandtodevelopnewmaterialswithspecificproperties.</li><li>Biology:Thesymmetricproductcanbeusedtostudythetopologyofbiologicalsystemsandtodevelopnewmodelsforthebehaviorofbiologicalsystems.</li></ul><p>Thesearejustafewexamplesofthemanypotentialapplicationsofthesymmetricproduct.Thestudyofthesymmetricproductisarapidlyevolvingfield,andnewapplicationsarebeingdiscoveredallthetime.</p>b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) </span></p> <p>To do this, we will use the following fact:</p> <ul> <li>If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span> are two spaces, then the first Betti number of the product space <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \times Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span> is given by:</li> </ul> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(X \times Y) = b_{1}(X) + b_{1}(Y) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mclose">)</span></span></span></span></span></p> <p>Using this fact, we can write:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(S^{(n)}) = b_{1}(S \times \cdots \times S) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> appears <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> times in the product. Since each copy of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> has a single connected component, we have:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">b_{0}(S) = 1 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span></p> <p>Therefore, we can write:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(S^{(n)}) = b_{1}(S \times \cdots \times S) = b_{1}(S) + nb_{0}(S) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span></span></p> <h2><strong>Q: What is the symmetric product of a surface?</strong></h2> <p>A: The symmetric product of a surface <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span>, denoted by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">S^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.888em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span>, is a new surface obtained by identifying points on <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> that are separated by a divisor of degree <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>. This means that if two points <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> on <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> are separated by a divisor of degree <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>, then they are identified in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">S^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.888em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span>.</p> <h2><strong>Q: What is the first Betti number of a surface?</strong></h2> <p>A: The first Betti number of a surface <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span>, denoted by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(S)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span>, is a topological invariant that measures the number of one-dimensional holes, or loops, in the surface.</p> <h2><strong>Q: How is the first Betti number of the symmetric product related to the first Betti number of the original surface?</strong></h2> <p>A: The first Betti number of the symmetric product <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">S^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.888em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span> is given by the formula:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{0}(S)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span> is the zeroth Betti number of the surface, which measures the number of connected components of the surface.</p> <h2><strong>Q: What is the significance of the formula <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.138em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span></span></span></span>?</strong></h2> <p>A: The formula provides a way to calculate the number of one-dimensional holes, or loops, in the symmetric product of a surface. This is essential in understanding the topology of the symmetric product and its applications in various areas of mathematics.</p> <h2><strong>Q: Can you give an example of how to use the formula?</strong></h2> <p>A: Suppose we have a surface <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> with a single connected component and a single loop, so <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">b_{1}(S) = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">b_{0}(S) = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>. If we take the symmetric product <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">S^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.888em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span>, then the number of new loops created is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>, so <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">nb_{0}(S) = n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>. Therefore, the first Betti number of the symmetric product is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo><mo>=</mo><msub><mi>b</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>+</mo><mi>n</mi><msub><mi>b</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>+</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">b_{1}(S^{(n)}) = b_{1}(S) + nb_{0}(S) = 1 + n </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span></p> <p>This means that the symmetric product <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>S</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">S^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.888em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span> has <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> one-dimensional holes, or loops.</p> <h2><strong>Q: What are some applications of the symmetric product in mathematics?</strong></h2> <p>A: The symmetric product has applications in various areas of mathematics, including algebraic geometry, topology, and number theory. For example, it can be used to study the topology of algebraic curves and surfaces, and to calculate the number of solutions to certain algebraic equations.</p> <h2><strong>Q: What are some open problems in the study of the symmetric product?</strong></h2> <p>A: There are many open problems in the study of the symmetric product, including the calculation of higher Betti numbers and the study of the topology of the symmetric product in higher dimensions.</p> <h2><strong>Q: What resources are available for learning more about the symmetric product?</strong></h2> <p>A: There are many resources for learning more about the symmetric product, including textbooks, research papers, and online courses. Some recommended resources include:</p> <ul> <li>Fulton, W. (1984). Intersection theory. Springer-Verlag.</li> <li>Hartshorne, R. (1977). Algebraic geometry. Springer-Verlag.</li> <li>Mumford, D. (1976). Algebraic geometry I: Complex projective varieties. Springer-Verlag.</li> </ul> <h2><strong>Q: How can I get involved in research on the symmetric product?</strong></h2> <p>A: If you are interested in getting involved in research on the symmetric product, there are several ways to do so. You can:</p> <ul> <li>Contact researchers in the field and ask if they have any openings for graduate students or postdoctoral researchers.</li> <li>Look for research opportunities at universities or research institutions.</li> <li>Attend conferences and workshops on algebraic geometry and topology to learn more about the latest developments in the field.</li> </ul> <h2><strong>Q: What are some potential applications of the symmetric product in real-world problems?</strong></h2> <p>A: The symmetric product has potential applications in various real-world problems, including:</p> <ul> <li>Computer vision: The symmetric product can be used to study the topology of images and to develop new algorithms for image processing and recognition.</li> <li>Materials science: The symmetric product can be used to study the topology of materials and to develop new materials with specific properties.</li> <li>Biology: The symmetric product can be used to study the topology of biological systems and to develop new models for the behavior of biological systems.</li> </ul> <p>These are just a few examples of the many potential applications of the symmetric product. The study of the symmetric product is a rapidly evolving field, and new applications are being discovered all the time.</p>