A Novel Approach to Integrating sin(x) / sin(3x)
In the realm of calculus, integration is a fundamental concept that has been extensively studied and applied in various fields. One of the most intriguing and challenging integrals is the integration of sin(x) / sin(3x). While the typical solution involves rewriting sin(3x) as 3 sin ( x ) − 4 sin 3 ( x ) 3 \sin(x) - 4\sin^3(x) 3 sin ( x ) − 4 sin 3 ( x ) , canceling out sin(x), and then multiplying the numerator and denominator by sec 2 ( x ) \sec^2(x) sec 2 ( x ) , resulting in a logarithmic function with tan x, we aim to explore an alternative solution to this integral.
The traditional approach to integrating sin(x) / sin(3x) involves rewriting sin(3x) as 3 sin ( x ) − 4 sin 3 ( x ) 3 \sin(x) - 4\sin^3(x) 3 sin ( x ) − 4 sin 3 ( x ) . This is achieved by utilizing the triple angle formula for sine, which states that sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^3(x) sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) . By substituting this expression into the original integral, we obtain:
∫ sin ( x ) 3 sin ( x ) − 4 sin 3 ( x ) d x \int \frac{\sin(x)}{3\sin(x) - 4\sin^3(x)} dx
∫ 3 sin ( x ) − 4 sin 3 ( x ) sin ( x ) d x
Next, we cancel out sin(x) from the numerator and denominator, resulting in:
∫ 1 3 − 4 sin 2 ( x ) d x \int \frac{1}{3 - 4\sin^2(x)} dx
∫ 3 − 4 sin 2 ( x ) 1 d x
To simplify the expression further, we multiply the numerator and denominator by sec 2 ( x ) \sec^2(x) sec 2 ( x ) , which yields:
∫ sec 2 ( x ) 3 sec 2 ( x ) − 4 sec 2 ( x ) tan 2 ( x ) d x \int \frac{\sec^2(x)}{3\sec^2(x) - 4\sec^2(x)\tan^2(x)} dx
∫ 3 sec 2 ( x ) − 4 sec 2 ( x ) tan 2 ( x ) sec 2 ( x ) d x
By utilizing the identity sec 2 ( x ) = 1 + tan 2 ( x ) \sec^2(x) = 1 + \tan^2(x) sec 2 ( x ) = 1 + tan 2 ( x ) , we can rewrite the expression as:
∫ 1 + tan 2 ( x ) 3 ( 1 + tan 2 ( x ) ) − 4 tan 2 ( x ) d x \int \frac{1 + \tan^2(x)}{3(1 + \tan^2(x)) - 4\tan^2(x)} dx
∫ 3 ( 1 + tan 2 ( x )) − 4 tan 2 ( x ) 1 + tan 2 ( x ) d x
Simplifying the expression further, we obtain:
∫ 1 + tan 2 ( x ) 3 + tan 2 ( x ) d x \int \frac{1 + \tan^2(x)}{3 + \tan^2(x)} dx
∫ 3 + tan 2 ( x ) 1 + tan 2 ( x ) d x
This expression can be rewritten as:
∫ 1 3 + tan 2 ( x ) d x + ∫ tan 2 ( x ) 3 + tan 2 ( x ) d x \int \frac{1}{3 + \tan^2(x)} dx + \int \frac{\tan^2(x)}{3 + \tan^2(x)} dx
∫ 3 + tan 2 ( x ) 1 d x + ∫ 3 + tan 2 ( x ) tan 2 ( x ) d x
The first integral can be evaluated using the substitution u = tan ( x ) u = \tan(x) u = tan ( x ) , which yields:
∫ 1 3 + u 2 d u = 1 3 arctan ( u 3 ) + C \int \frac{1}{3 + u^2} du = \frac{1}{\sqrt{3}} \arctan\left(\frac{u}{\sqrt{3}}\right) + C
∫ 3 + u 2 1 d u = 3 1 arctan ( 3 u ) + C
Substituting back u = tan ( x ) u = \tan(x) u = tan ( x ) , we obtain:
1 3 arctan ( tan ( x ) 3 ) + C \frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + C
3 1 arctan ( 3 tan ( x ) ) + C
The second integral can be evaluated using the substitution u = tan ( x ) u = \tan(x) u = tan ( x ) , which yields:
∫ tan 2 ( x ) 3 + tan 2 ( x ) d x = ∫ u 2 3 + u 2 d u \int \frac{\tan^2(x)}{3 + \tan^2(x)} dx = \int \frac{u^2}{3 + u^2} du
∫ 3 + tan 2 ( x ) tan 2 ( x ) d x = ∫ 3 + u 2 u 2 d u
Using the substitution v = u 2 v = u^2 v = u 2 , we obtain:
∫ v 3 + v d v = 1 2 ∫ 2 v 3 + v d v \int \frac{v}{3 + v} dv = \frac{1}{2} \int \frac{2v}{3 + v} dv
∫ 3 + v v d v = 2 1 ∫ 3 + v 2 v d v
Using the substitution w = 3 + v w = 3 + v w = 3 + v , we obtain:
1 2 ∫ 2 w w d w = 1 2 ∫ 1 d w = 1 2 w + C \frac{1}{2} \int \frac{2w}{w} dw = \frac{1}{2} \int 1 dw = \frac{1}{2} w + C
2 1 ∫ w 2 w d w = 2 1 ∫ 1 d w = 2 1 w + C
Substituting back w = 3 + v w = 3 + v w = 3 + v and v = u 2 v = u^2 v = u 2 , we obtain:
1 2 ( 3 + u 2 ) + C = 3 2 + 1 2 tan 2 ( x ) + C \frac{1}{2} (3 + u^2) + C = \frac{3}{2} + \frac{1}{2} \tan^2(x) + C
2 1 ( 3 + u 2 ) + C = 2 3 + 2 1 tan 2 ( x ) + C
Combining the two results, we obtain:
1 3 arctan ( tan ( x ) 3 ) + 3 2 + 1 2 tan 2 ( x ) + C \frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + \frac{3}{2} + \frac{1}{2} \tan^2(x) + C
3 1 arctan ( 3 tan ( x ) ) + 2 3 + 2 1 tan 2 ( x ) + C
This is the traditional solution to the integral of sin(x) / sin(3x).
In this section, we aim to explore an alternative solution to the integral of sin(x) / sin(3x). Our approach involves utilizing the identity sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^3(x) sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) and then applying the substitution u = sin ( x ) u = \sin(x) u = sin ( x ) .
By substituting u = sin ( x ) u = \sin(x) u = sin ( x ) , we obtain:
∫ u 3 u − 4 u 3 d u \int \frac{u}{3u - 4u^3} du
∫ 3 u − 4 u 3 u d u
To simplify the expression further, we multiply the numerator and denominator by 1 + 4 u 2 1 + 4u^2 1 + 4 u 2 , which yields:
∫ u ( 1 + 4 u 2 ) 3 u ( 1 + 4 u 2 ) − 4 u 3 ( 1 + 4 u 2 ) d u \int \frac{u(1 + 4u^2)}{3u(1 + 4u^2) - 4u^3(1 + 4u^2)} du
∫ 3 u ( 1 + 4 u 2 ) − 4 u 3 ( 1 + 4 u 2 ) u ( 1 + 4 u 2 ) d u
Simplifying the expression further, we obtain:
∫ u ( 1 + 4 u 2 ) 3 u + 12 u 3 − 4 u 3 − 16 u 5 d u \int \frac{u(1 + 4u^2)}{3u + 12u^3 - 4u^3 - 16u^5} du
∫ 3 u + 12 u 3 − 4 u 3 − 16 u 5 u ( 1 + 4 u 2 ) d u
Combining like terms, we obtain:
∫ u ( 1 + 4 u 2 ) 3 u − 16 u 5 d u \int \frac{u(1 + 4u^2)}{3u - 16u^5} du
∫ 3 u − 16 u 5 u ( 1 + 4 u 2 ) d u
To simplify the expression further, we multiply the numerator and denominator by 1 − 16 u 4 1 - 16u^4 1 − 16 u 4 , which yields:
∫ u ( 1 + 4 u 2 ) ( 1 − 16 u 4 ) 3 u ( 1 − 16 u 4 ) − 16 u 5 ( 1 − 16 u 4 ) d u \int \frac{u(1 + 4u^2)(1 - 16u^4)}{3u(1 - 16u^4) - 16u^5(1 - 16u^4)} du
∫ 3 u ( 1 − 16 u 4 ) − 16 u 5 ( 1 − 16 u 4 ) u ( 1 + 4 u 2 ) ( 1 − 16 u 4 ) d u
Simplifying the expression further, we obtain:
∫ u ( 1 + 4 u 2 ) ( 1 − 16 u 4 ) 3 u − 16 u 5 d u \int \frac{u(1 + 4u^2)(1 - 16u^4)}{3u - 16u^5} du
∫ 3 u − 16 u 5 u ( 1 + 4 u 2 ) ( 1 − 16 u 4 ) d u
Combining like terms, we obtain:
∫ u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) 3 u − 16 u 5 d u \int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du
∫ 3 u − 16 u 5 u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) d u
Simplifying the expression further, we obtain:
∫ u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) 3 u − 16 u 5 d u \int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du
∫ 3 u − 16 u 5 u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) d u
This expression can be rewritten as:
∫ u − 16 u 5 + 4 u 3 − 64 u 7 3 u − 16 u 5 d u \int \frac{u - 16u^5 + 4u^3 - 64u^7}{3u - 16u^5} du
∫ 3 u − 16 u 5 u − 16 u 5 + 4 u 3 − 64 u 7 d u
To simplify the expression further, we multiply the numerator and denominator by 1 + 16 u 4 1 + 16u^4 1 + 16 u 4 , which yields:
∫ ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) 3 u ( 1 + 16 u 4 ) − 16 u 5 ( 1 + 16 u 4 ) d u \int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u(1 + 16u^4) - 16u^5(1 + 16u^4)} du
∫ 3 u ( 1 + 16 u 4 ) − 16 u 5 ( 1 + 16 u 4 ) ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) d u
Simplifying the expression further, we obtain:
∫ ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) 3 u + 48 u 5 − 16 u 5 − 256 u 9 d u \int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u + 48u^5 - 16u^5 - 256u^9} du
∫ 3 u + 48 u 5 − 16 u 5 − 256 u 9 ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) d u
Combining like terms, we obtain:
∫ ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) 3 u − 256 u 9 d u \int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u - 256u^9} du
∫ 3 u − 256 u 9 ( u − 16 u 5 + 4 u 3 − 64 u 7 ) ( 1 + 16 u 4 ) d u
This expression can be rewritten as:
∫ u − 16 u 5 + 4 u 3 − 64 u 7 3 u − 256 u 9 d u + ∫ ( 1 + 16 u 4 ) ( u − 16 u 5 + 4 u 3 − 64 u 7 ) 3 u − 256 u 9 d u \int \frac{u - 16u^5 + 4u^3 - 64u^7}{3u - 256u^9} du + \int \frac{(1 + 16u^4)(u - 16u^5 + 4u^3 - 64u^7)}{3u - 256u^9} du
∫ 3 u − 256 u 9 u − 16 u 5 + 4 u 3 − 64 u 7 d u + ∫ 3 u − 256 u 9 ( 1 + 16 u 4 ) ( u − 16 u 5 + 4 u 3 − 64 u 7 ) d u
The first integral can be evaluated using the substitution v = u 3 v = u^3 v = u 3 , which yields:
∫ v − 16 v 2 + 4 v 3 − 64 v 7 3 v − 256 v 9 d v \int \frac{v - 16v^2 + 4v^3 - 64v^7}{3v - 256v^9} dv
∫ 3 v − 256 v 9 v − 16 v 2 + 4 v 3 − 64 v 7 d v
Using the substitution w = v 2 w = v^2 w = v 2 , we obtain:
∫ w − 16 w 2 + 4 w 3 − 64 w 7 3 w − 256 w 9 d w \int \frac{w - 16w^2 + 4w^3 - 64w^7}{3w - 256w^9} dw
∫ 3 w − 256 w 9 w − 16 w 2 + 4 w 3 − 64 w 7 d w
Using the substitution x = w 3 x = w^3 x = w 3 , we obtain:
∫ x − 16 x 2 + 4 x 3 − 64 x 7 3 x − 256 x 9 d x \int \frac{x - 16x^2 + 4x^3 - 64x^7}{3x - 256x^9} dx
∫ 3 x − 256 x 9 x − 16 x 2 + 4 x 3 − 64 x 7 d x
This expression can be rewritten as:
∫ x − 16 x 2 + 4 x 3 3 x − 256 x 9 d x − ∫ 64 x 7 3 x − 256 x 9 d x \int \frac{x - 16x^2 + 4x^3}{3x - 256x^9} dx - \int \frac{64x^7}{3x - 256x^9} dx
∫ 3 x − 256 x 9 x − 16 x 2 + 4 x 3 d x − ∫ 3 x − 256 x 9 64 x 7 d x
The first integral can be evaluated using the substitution y = x 3 y = x^3 y = x 3 , which yields:
\int \frac{y - 16y^2 + 4y^3}{3y - 256y^9} dy<br/>
**Q&A: Integral of sin(x) / sin(3x)**
=====================================
Q: What is the integral of sin(x) / sin(3x)?
A: The integral of sin(x) / sin(3x) is a challenging problem that has been extensively studied in the field of calculus. The traditional solution involves rewriting sin(3x) as 3 sin ( x ) − 4 sin 3 ( x ) 3 \sin(x) - 4\sin^3(x) 3 sin ( x ) − 4 sin 3 ( x ) , canceling out sin(x), and then multiplying the numerator and denominator by sec 2 ( x ) \sec^2(x) sec 2 ( x ) , resulting in a logarithmic function with tan x.
Q: Is there an alternative solution to the integral of sin(x) / sin(3x)?
A: Yes, there is an alternative solution to the integral of sin(x) / sin(3x). Our approach involves utilizing the identity sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^3(x) sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x ) and then applying the substitution u = sin ( x ) u = \sin(x) u = sin ( x ) .
Q: How do you simplify the expression after applying the substitution u = sin ( x ) u = \sin(x) u = sin ( x ) ?
A: After applying the substitution u = sin ( x ) u = \sin(x) u = sin ( x ) , we simplify the expression by multiplying the numerator and denominator by 1 + 4 u 2 1 + 4u^2 1 + 4 u 2 , which yields:
∫ u ( 1 + 4 u 2 ) 3 u ( 1 + 4 u 2 ) − 4 u 3 ( 1 + 4 u 2 ) d u < / s p a n > < / p > < h 2 > < s t r o n g > Q : H o w d o y o u s i m p l i f y t h e e x p r e s s i o n f u r t h e r ? < / s t r o n g > < / h 2 > < p > A : W e s i m p l i f y t h e e x p r e s s i o n f u r t h e r b y c o m b i n i n g l i k e t e r m s a n d t h e n m u l t i p l y i n g t h e n u m e r a t o r a n d d e n o m i n a t o r b y < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m n > 1 < / m n > < m o > − < / m o > < m n > 16 < / m n > < m s u p > < m i > u < / m i > < m n > 4 < / m n > < / m s u p > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > 1 − 16 u 4 < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v e r t i c a l − a l i g n : − 0.0833 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 16 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 4 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > , w h i c h y i e l d s : < / p > < p c l a s s = ′ k a t e x − b l o c k ′ > < s p a n c l a s s = " k a t e x − d i s p l a y " > < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " d i s p l a y = " b l o c k " > < s e m a n t i c s > < m r o w > < m o > ∫ < / m o > < m f r a c > < m r o w > < m i > u < / m i > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m n > 1 < / m n > < m o > − < / m o > < m n > 16 < / m n > < m s u p > < m i > u < / m i > < m n > 4 < / m n > < / m s u p > < m o > + < / m o > < m n > 4 < / m n > < m s u p > < m i > u < / m i > < m n > 2 < / m n > < / m s u p > < m o > − < / m o > < m n > 64 < / m n > < m s u p > < m i > u < / m i > < m n > 6 < / m n > < / m s u p > < m o s t r e t c h y = " f a l s e " > ) < / m o > < / m r o w > < m r o w > < m n > 3 < / m n > < m i > u < / m i > < m o > − < / m o > < m n > 16 < / m n > < m s u p > < m i > u < / m i > < m n > 5 < / m n > < / m s u p > < / m r o w > < / m f r a c > < m i > d < / m i > < m i > u < / m i > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > ∫ u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) 3 u − 16 u 5 d u < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 2.3534 e m ; v e r t i c a l − a l i g n : − 0.8622 e m ; " > < / s p a n > < s p a n c l a s s = " m o p o p − s y m b o l l a r g e − o p " s t y l e = " m a r g i n − r i g h t : 0.44445 e m ; p o s i t i o n : r e l a t i v e ; t o p : − 0.0011 e m ; " > ∫ < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.4911 e m ; " > < s p a n s t y l e = " t o p : − 2.314 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 16 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.7401 e m ; " > < s p a n s t y l e = " t o p : − 2.989 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 5 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 16 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 4 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 4 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 2 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 64 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 6 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.7693 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > d < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / p > < h 2 > < s t r o n g > Q : H o w d o y o u e v a l u a t e t h e i n t e g r a l ? < / s t r o n g > < / h 2 > < p > A : W e e v a l u a t e t h e i n t e g r a l b y a p p l y i n g t h e s u b s t i t u t i o n < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m i > v < / m i > < m o > = < / m o > < m s u p > < m i > u < / m i > < m n > 3 < / m n > < / m s u p > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > v = u 3 < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < s p a n c l a s s = " m r e l " > = < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 3 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > , w h i c h y i e l d s : < / p > < p c l a s s = ′ k a t e x − b l o c k ′ > < s p a n c l a s s = " k a t e x − d i s p l a y " > < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " d i s p l a y = " b l o c k " > < s e m a n t i c s > < m r o w > < m o > ∫ < / m o > < m f r a c > < m r o w > < m i > v < / m i > < m o > − < / m o > < m n > 16 < / m n > < m s u p > < m i > v < / m i > < m n > 2 < / m n > < / m s u p > < m o > + < / m o > < m n > 4 < / m n > < m s u p > < m i > v < / m i > < m n > 3 < / m n > < / m s u p > < m o > − < / m o > < m n > 64 < / m n > < m s u p > < m i > v < / m i > < m n > 7 < / m n > < / m s u p > < / m r o w > < m r o w > < m n > 3 < / m n > < m i > v < / m i > < m o > − < / m o > < m n > 256 < / m n > < m s u p > < m i > v < / m i > < m n > 9 < / m n > < / m s u p > < / m r o w > < / m f r a c > < m i > d < / m i > < m i > v < / m i > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > ∫ v − 16 v 2 + 4 v 3 − 64 v 7 3 v − 256 v 9 d v < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 2.3534 e m ; v e r t i c a l − a l i g n : − 0.8622 e m ; " > < / s p a n > < s p a n c l a s s = " m o p o p − s y m b o l l a r g e − o p " s t y l e = " m a r g i n − r i g h t : 0.44445 e m ; p o s i t i o n : r e l a t i v e ; t o p : − 0.0011 e m ; " > ∫ < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.4911 e m ; " > < s p a n s t y l e = " t o p : − 2.314 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 256 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.7401 e m ; " > < s p a n s t y l e = " t o p : − 2.989 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 9 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 16 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 2 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 4 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 3 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 64 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 7 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.7693 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > d < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / p > < h 2 > < s t r o n g > Q : W h a t i s t h e f i n a l r e s u l t o f t h e i n t e g r a l ? < / s t r o n g > < / h 2 > < p > A : T h e f i n a l r e s u l t o f t h e i n t e g r a l i s : < / p > < p c l a s s = ′ k a t e x − b l o c k ′ > < s p a n c l a s s = " k a t e x − d i s p l a y " > < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " d i s p l a y = " b l o c k " > < s e m a n t i c s > < m r o w > < m f r a c > < m n > 1 < / m n > < m s q r t > < m n > 3 < / m n > < / m s q r t > < / m f r a c > < m i > a r c t a n < / m i > < m o > < / m o > < m r o w > < m o f e n c e = " t r u e " > ( < / m o > < m f r a c > < m r o w > < m i > t a n < / m i > < m o > < / m o > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < / m r o w > < m s q r t > < m n > 3 < / m n > < / m s q r t > < / m f r a c > < m o f e n c e = " t r u e " > ) < / m o > < / m r o w > < m o > + < / m o > < m f r a c > < m n > 3 < / m n > < m n > 2 < / m n > < / m f r a c > < m o > + < / m o > < m f r a c > < m n > 1 < / m n > < m n > 2 < / m n > < / m f r a c > < m s u p > < m r o w > < m i > t a n < / m i > < m o > < / m o > < / m r o w > < m n > 2 < / m n > < / m s u p > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < m o > + < / m o > < m i > C < / m i > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > 1 3 arctan ( tan ( x ) 3 ) + 3 2 + 1 2 tan 2 ( x ) + C < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 2.4 e m ; v e r t i c a l − a l i g n : − 0.95 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " > < s p a n s t y l e = " t o p : − 2.2028 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d s q r t " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.9072 e m ; " > < s p a n c l a s s = " s v g − a l i g n " s t y l e = " t o p : − 3 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " s t y l e = " p a d d i n g − l e f t : 0.833 e m ; " > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 2.8672 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " h i d e − t a i l " s t y l e = " m i n − w i d t h : 0.853 e m ; h e i g h t : 1.08 e m ; " > < s v g x m l n s = " h t t p : / / w w w . w 3. o r g / 2000 / s v g " w i d t h = " 400 e m " h e i g h t = " 1.08 e m " v i e w B o x = " 004000001080 " p r e s e r v e A s p e c t R a t i o = " x M i n Y M i n s l i c e " > < p a t h d = " M 95 , 702 c − 2.7 , 0 , − 7.17 , − 2.7 , − 13.5 , − 8 c − 5.8 , − 5.3 , − 9.5 , − 10 , − 9.5 , − 14 c 0 , − 2 , 0.3 , − 3.3 , 1 , − 4 c 1.3 , − 2.7 , 23.83 , − 20.7 , 67.5 , − 54 c 44.2 , − 33.3 , 65.8 , − 50.3 , 66.5 , − 51 c 1.3 , − 1.3 , 3 , − 2 , 5 , − 2 c 4.7 , 0 , 8.7 , 3.3 , 12 , 10 s 173 , 378 , 173 , 378 c 0.7 , 0 , 35.3 , − 71 , 104 , − 213 c 68.7 , − 142 , 137.5 , − 285 , 206.5 , − 429 c 69 , − 144 , 104.5 , − 217.7 , 106.5 , − 221 l 0 − 0 c 5.3 , − 9.3 , 12 , − 14 , 20 , − 14 H 400000 v 40 H 845.2724 s − 225.272 , 467 , − 225.272 , 467 s − 235 , 486 , − 235 , 486 c − 2.7 , 4.7 , − 9 , 7 , − 19 , 7 c − 6 , 0 , − 10 , − 1 , − 12 , − 3 s − 194 , − 422 , − 194 , − 422 s − 65 , 47 , − 65 , 47 z M 83480 h 400000 v 40 h − 400000 z " / > < / s v g > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.1328 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.93 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > a r c t a n < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m i n n e r " > < s p a n c l a s s = " m o p e n d e l i m c e n t e r " s t y l e = " t o p : 0 e m ; " > < s p a n c l a s s = " d e l i m s i z i n g s i z e 3 " > ( < / s p a n > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.427 e m ; " > < s p a n s t y l e = " t o p : − 2.2028 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d s q r t " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.9072 e m ; " > < s p a n c l a s s = " s v g − a l i g n " s t y l e = " t o p : − 3 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " s t y l e = " p a d d i n g − l e f t : 0.833 e m ; " > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 2.8672 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " h i d e − t a i l " s t y l e = " m i n − w i d t h : 0.853 e m ; h e i g h t : 1.08 e m ; " > < s v g x m l n s = " h t t p : / / w w w . w 3. o r g / 2000 / s v g " w i d t h = " 400 e m " h e i g h t = " 1.08 e m " v i e w B o x = " 004000001080 " p r e s e r v e A s p e c t R a t i o = " x M i n Y M i n s l i c e " > < p a t h d = " M 95 , 702 c − 2.7 , 0 , − 7.17 , − 2.7 , − 13.5 , − 8 c − 5.8 , − 5.3 , − 9.5 , − 10 , − 9.5 , − 14 c 0 , − 2 , 0.3 , − 3.3 , 1 , − 4 c 1.3 , − 2.7 , 23.83 , − 20.7 , 67.5 , − 54 c 44.2 , − 33.3 , 65.8 , − 50.3 , 66.5 , − 51 c 1.3 , − 1.3 , 3 , − 2 , 5 , − 2 c 4.7 , 0 , 8.7 , 3.3 , 12 , 10 s 173 , 378 , 173 , 378 c 0.7 , 0 , 35.3 , − 71 , 104 , − 213 c 68.7 , − 142 , 137.5 , − 285 , 206.5 , − 429 c 69 , − 144 , 104.5 , − 217.7 , 106.5 , − 221 l 0 − 0 c 5.3 , − 9.3 , 12 , − 14 , 20 , − 14 H 400000 v 40 H 845.2724 s − 225.272 , 467 , − 225.272 , 467 s − 235 , 486 , − 235 , 486 c − 2.7 , 4.7 , − 9 , 7 , − 19 , 7 c − 6 , 0 , − 10 , − 1 , − 12 , − 3 s − 194 , − 422 , − 194 , − 422 s − 65 , 47 , − 65 , 47 z M 83480 h 400000 v 40 h − 400000 z " / > < / s v g > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.1328 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p " > t a n < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.93 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e d e l i m c e n t e r " s t y l e = " t o p : 0 e m ; " > < s p a n c l a s s = " d e l i m s i z i n g s i z e 3 " > ) < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 2.0074 e m ; v e r t i c a l − a l i g n : − 0.686 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " > < s p a n s t y l e = " t o p : − 2.314 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 2 < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.686 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 2.0074 e m ; v e r t i c a l − a l i g n : − 0.686 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o p e n n u l l d e l i m i t e r " > < / s p a n > < s p a n c l a s s = " m f r a c " > < s p a n c l a s s = " v l i s t − t v l i s t − t 2 " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " > < s p a n s t y l e = " t o p : − 2.314 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 2 < / s p a n > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.23 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " f r a c − l i n e " s t y l e = " b o r d e r − b o t t o m − w i d t h : 0.04 e m ; " > < / s p a n > < / s p a n > < s p a n s t y l e = " t o p : − 3.677 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − s " > < / s p a n > < / s p a n > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.686 e m ; " > < s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m c l o s e n u l l d e l i m i t e r " > < / s p a n > < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > < s p a n c l a s s = " m o p " > t a n < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8641 e m ; " > < s p a n s t y l e = " t o p : − 3.113 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 2 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.6833 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.07153 e m ; " > C < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / p > < h 2 > < s t r o n g > Q : W h a t a r e t h e k e y s t e p s i n s o l v i n g t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) ? < / s t r o n g > < / h 2 > < p > A : T h e k e y s t e p s i n s o l v i n g t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) a r e : < / p > < o l > < l i > R e w r i t e s i n ( 3 x ) a s < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m n > 3 < / m n > < m i > s i n < / m i > < m o > < / m o > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < m o > − < / m o > < m n > 4 < / m n > < m s u p > < m r o w > < m i > s i n < / m i > < m o > < / m o > < / m r o w > < m n > 3 < / m n > < / m s u p > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > 3 sin ( x ) − 4 sin 3 ( x ) < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 1 e m ; v e r t i c a l − a l i g n : − 0.25 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 3 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > s i n < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 1.1219 e m ; v e r t i c a l − a l i g n : − 0.25 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 4 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.1667 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > < s p a n c l a s s = " m o p " > s i n < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8719 e m ; " > < s p a n s t y l e = " t o p : − 3.1208 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 3 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < l i > C a n c e l o u t s i n ( x ) a n d m u l t i p l y t h e n u m e r a t o r a n d d e n o m i n a t o r b y < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m s u p > < m r o w > < m i > s e c < / m i > < m o > < / m o > < / m r o w > < m n > 2 < / m n > < / m s u p > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > sec 2 ( x ) < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 1.0641 e m ; v e r t i c a l − a l i g n : − 0.25 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > < s p a n c l a s s = " m o p " > s e c < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 2 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < l i > A p p l y t h e s u b s t i t u t i o n < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m i > u < / m i > < m o > = < / m o > < m i > s i n < / m i > < m o > < / m o > < m o s t r e t c h y = " f a l s e " > ( < / m o > < m i > x < / m i > < m o s t r e t c h y = " f a l s e " > ) < / m o > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > u = sin ( x ) < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < s p a n c l a s s = " m r e l " > = < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 1 e m ; v e r t i c a l − a l i g n : − 0.25 e m ; " > < / s p a n > < s p a n c l a s s = " m o p " > s i n < / s p a n > < s p a n c l a s s = " m o p e n " > ( < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " > x < / s p a n > < s p a n c l a s s = " m c l o s e " > ) < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < l i > S i m p l i f y t h e e x p r e s s i o n b y m u l t i p l y i n g t h e n u m e r a t o r a n d d e n o m i n a t o r b y < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m n > 1 < / m n > < m o > + < / m o > < m n > 4 < / m n > < m s u p > < m i > u < / m i > < m n > 2 < / m n > < / m s u p > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > 1 + 4 u 2 < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v e r t i c a l − a l i g n : − 0.0833 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > + < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 4 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 2 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < l i > S i m p l i f y t h e e x p r e s s i o n f u r t h e r b y c o m b i n i n g l i k e t e r m s a n d t h e n m u l t i p l y i n g t h e n u m e r a t o r a n d d e n o m i n a t o r b y < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m n > 1 < / m n > < m o > − < / m o > < m n > 16 < / m n > < m s u p > < m i > u < / m i > < m n > 4 < / m n > < / m s u p > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > 1 − 16 u 4 < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v e r t i c a l − a l i g n : − 0.0833 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 1 < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < s p a n c l a s s = " m b i n " > − < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2222 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > 16 < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 4 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < l i > E v a l u a t e t h e i n t e g r a l b y a p p l y i n g t h e s u b s t i t u t i o n < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " > < m a t h x m l n s = " h t t p : / / w w w . w 3. o r g / 1998 / M a t h / M a t h M L " > < s e m a n t i c s > < m r o w > < m i > v < / m i > < m o > = < / m o > < m s u p > < m i > u < / m i > < m n > 3 < / m n > < / m s u p > < / m r o w > < a n n o t a t i o n e n c o d i n g = " a p p l i c a t i o n / x − t e x " > v = u 3 < / a n n o t a t i o n > < / s e m a n t i c s > < / m a t h > < / s p a n > < s p a n c l a s s = " k a t e x − h t m l " a r i a − h i d d e n = " t r u e " > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d m a t h n o r m a l " s t y l e = " m a r g i n − r i g h t : 0.03588 e m ; " > v < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < s p a n c l a s s = " m r e l " > = < / s p a n > < s p a n c l a s s = " m s p a c e " s t y l e = " m a r g i n − r i g h t : 0.2778 e m ; " > < / s p a n > < / s p a n > < s p a n c l a s s = " b a s e " > < s p a n c l a s s = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " > < / s p a n > < s p a n c l a s s = " m o r d " > < s p a n c l a s s = " m o r d m a t h n o r m a l " > u < / s p a n > < s p a n c l a s s = " m s u p s u b " > < s p a n c l a s s = " v l i s t − t " > < s p a n c l a s s = " v l i s t − r " > < s p a n c l a s s = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " > < s p a n s t y l e = " t o p : − 3.063 e m ; m a r g i n − r i g h t : 0.05 e m ; " > < s p a n c l a s s = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " > < / s p a n > < s p a n c l a s s = " s i z i n g r e s e t − s i z e 6 s i z e 3 m t i g h t " > < s p a n c l a s s = " m o r d m t i g h t " > 3 < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > < / s p a n > . < / l i > < / o l > < h 2 > < s t r o n g > Q : W h a t a r e t h e b e n e f i t s o f u s i n g t h e a l t e r n a t i v e s o l u t i o n t o t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) ? < / s t r o n g > < / h 2 > < p > A : T h e b e n e f i t s o f u s i n g t h e a l t e r n a t i v e s o l u t i o n t o t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) a r e : < / p > < o l > < l i > I t p r o v i d e s a n a l t e r n a t i v e a p p r o a c h t o s o l v i n g t h e i n t e g r a l . < / l i > < l i > I t c a n b e u s e d t o v e r i f y t h e t r a d i t i o n a l s o l u t i o n . < / l i > < l i > I t c a n b e u s e d t o f i n d n e w a n d i n t e r e s t i n g s o l u t i o n s t o t h e i n t e g r a l . < / l i > < / o l > < h 2 > < s t r o n g > Q : W h a t a r e t h e l i m i t a t i o n s o f t h e a l t e r n a t i v e s o l u t i o n t o t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) ? < / s t r o n g > < / h 2 > < p > A : T h e l i m i t a t i o n s o f t h e a l t e r n a t i v e s o l u t i o n t o t h e i n t e g r a l o f s i n ( x ) / s i n ( 3 x ) a r e : < / p > < o l > < l i > I t m a y b e m o r e c o m p l e x t h a n t h e t r a d i t i o n a l s o l u t i o n . < / l i > < l i > I t m a y r e q u i r e m o r e a d v a n c e d m a t h e m a t i c a l t e c h n i q u e s . < / l i > < l i > I t m a y n o t b e a s w i d e l y k n o w n o r a c c e p t e d a s t h e t r a d i t i o n a l s o l u t i o n . < / l i > < / o l > \int \frac{u(1 + 4u^2)}{3u(1 + 4u^2) - 4u^3(1 + 4u^2)} du
</span></p>
<h2><strong>Q: How do you simplify the expression further?</strong></h2>
<p>A: We simplify the expression further by combining like terms and then multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">1 - 16u^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span>, which yields:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>∫</mo><mfrac><mrow><mi>u</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup><mo>−</mo><mn>64</mn><msup><mi>u</mi><mn>6</mn></msup><mo stretchy="false">)</mo></mrow><mrow><mn>3</mn><mi>u</mi><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>5</mn></msup></mrow></mfrac><mi>d</mi><mi>u</mi></mrow><annotation encoding="application/x-tex">\int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3534em;vertical-align:-0.8622em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">64</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">6</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">u</span></span></span></span></span></p>
<h2><strong>Q: How do you evaluate the integral?</strong></h2>
<p>A: We evaluate the integral by applying the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">v = u^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span>, which yields:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>∫</mo><mfrac><mrow><mi>v</mi><mo>−</mo><mn>16</mn><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><msup><mi>v</mi><mn>3</mn></msup><mo>−</mo><mn>64</mn><msup><mi>v</mi><mn>7</mn></msup></mrow><mrow><mn>3</mn><mi>v</mi><mo>−</mo><mn>256</mn><msup><mi>v</mi><mn>9</mn></msup></mrow></mfrac><mi>d</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">\int \frac{v - 16v^2 + 4v^3 - 64v^7}{3v - 256v^9} dv
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3534em;vertical-align:-0.8622em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">256</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">64</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span></p>
<h2><strong>Q: What is the final result of the integral?</strong></h2>
<p>A: The final result of the integral is:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi>arctan</mi><mo></mo><mrow><mo fence="true">(</mo><mfrac><mrow><mi>tan</mi><mo></mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><msqrt><mn>3</mn></msqrt></mfrac><mo fence="true">)</mo></mrow><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mrow><mi>tan</mi><mo></mo></mrow><mn>2</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">\frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + \frac{3}{2} + \frac{1}{2} \tan^2(x) + C
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">arctan</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">tan</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">tan</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></p>
<h2><strong>Q: What are the key steps in solving the integral of sin(x) / sin(3x)?</strong></h2>
<p>A: The key steps in solving the integral of sin(x) / sin(3x) are:</p>
<ol>
<li>Rewrite sin(3x) as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mn>4</mn><msup><mrow><mi>sin</mi><mo></mo></mrow><mn>3</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">3 \sin(x) - 4\sin^3(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1219em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">sin</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li>
<li>Cancel out sin(x) and multiply the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mi>sec</mi><mo></mo></mrow><mn>2</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sec^2(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">sec</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li>
<li>Apply the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u = \sin(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li>
<li>Simplify the expression by multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">1 + 4u^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</li>
<li>Simplify the expression further by combining like terms and then multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">1 - 16u^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span>.</li>
<li>Evaluate the integral by applying the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">v = u^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span>.</li>
</ol>
<h2><strong>Q: What are the benefits of using the alternative solution to the integral of sin(x) / sin(3x)?</strong></h2>
<p>A: The benefits of using the alternative solution to the integral of sin(x) / sin(3x) are:</p>
<ol>
<li>It provides an alternative approach to solving the integral.</li>
<li>It can be used to verify the traditional solution.</li>
<li>It can be used to find new and interesting solutions to the integral.</li>
</ol>
<h2><strong>Q: What are the limitations of the alternative solution to the integral of sin(x) / sin(3x)?</strong></h2>
<p>A: The limitations of the alternative solution to the integral of sin(x) / sin(3x) are:</p>
<ol>
<li>It may be more complex than the traditional solution.</li>
<li>It may require more advanced mathematical techniques.</li>
<li>It may not be as widely known or accepted as the traditional solution.</li>
</ol>
∫ 3 u ( 1 + 4 u 2 ) − 4 u 3 ( 1 + 4 u 2 ) u ( 1 + 4 u 2 ) d u < / s p an >< / p >< h 2 >< s t ro n g > Q : Ho w d oyo u s im pl i f y t h ee x p ress i o n f u r t h er ? < / s t ro n g >< / h 2 >< p > A : W es im pl i f y t h ee x p ress i o n f u r t h er b yco mbinin g l ik e t er m s an d t h e nm u lt i pl y in g t h e n u m er a t or an dd e n o mina t or b y < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mn > 1 < / mn >< m o > − < / m o >< mn > 16 < / mn >< m s u p >< mi > u < / mi >< mn > 4 < / mn >< / m s u p >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > 1 − 16 u 4 < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v er t i c a l − a l i g n : − 0.0833 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 1 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 16 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 4 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an > , w hi c h y i e l d s :< / p >< p c l a ss = ′ ka t e x − b l oc k ′ >< s p an c l a ss = " ka t e x − d i s pl a y " >< s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " d i s pl a y = " b l oc k " >< se man t i cs >< m ro w >< m o > ∫ < / m o >< m f r a c >< m ro w >< mi > u < / mi >< m os t re t c h y = " f a l se " > ( < / m o >< mn > 1 < / mn >< m o > − < / m o >< mn > 16 < / mn >< m s u p >< mi > u < / mi >< mn > 4 < / mn >< / m s u p >< m o > + < / m o >< mn > 4 < / mn >< m s u p >< mi > u < / mi >< mn > 2 < / mn >< / m s u p >< m o > − < / m o >< mn > 64 < / mn >< m s u p >< mi > u < / mi >< mn > 6 < / mn >< / m s u p >< m os t re t c h y = " f a l se " > ) < / m o >< / m ro w >< m ro w >< mn > 3 < / mn >< mi > u < / mi >< m o > − < / m o >< mn > 16 < / mn >< m s u p >< mi > u < / mi >< mn > 5 < / mn >< / m s u p >< / m ro w >< / m f r a c >< mi > d < / mi >< mi > u < / mi >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > ∫ 3 u − 16 u 5 u ( 1 − 16 u 4 + 4 u 2 − 64 u 6 ) d u < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 2.3534 e m ; v er t i c a l − a l i g n : − 0.8622 e m ; " >< / s p an >< s p an c l a ss = " m o p o p − sy mb o ll a r g e − o p " s t y l e = " ma r g in − r i g h t : 0.44445 e m ; p os i t i o n : re l a t i v e ; t o p : − 0.0011 e m ; " > ∫ < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.4911 e m ; " >< s p an s t y l e = " t o p : − 2.314 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 3 < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 16 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.7401 e m ; " >< s p an s t y l e = " t o p : − 2.989 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 5 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d " > 1 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 16 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 4 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 4 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 2 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 64 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 6 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.7693 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > d < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / p >< h 2 >< s t ro n g > Q : Ho w d oyo u e v a l u a t e t h e in t e g r a l ? < / s t ro n g >< / h 2 >< p > A : W ee v a l u a t e t h e in t e g r a l b y a ppl y in g t h es u b s t i t u t i o n < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mi > v < / mi >< m o >=< / m o >< m s u p >< mi > u < / mi >< mn > 3 < / mn >< / m s u p >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > v = u 3 < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< s p an c l a ss = " m re l " >=< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 3 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an > , w hi c h y i e l d s :< / p >< p c l a ss = ′ ka t e x − b l oc k ′ >< s p an c l a ss = " ka t e x − d i s pl a y " >< s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " d i s pl a y = " b l oc k " >< se man t i cs >< m ro w >< m o > ∫ < / m o >< m f r a c >< m ro w >< mi > v < / mi >< m o > − < / m o >< mn > 16 < / mn >< m s u p >< mi > v < / mi >< mn > 2 < / mn >< / m s u p >< m o > + < / m o >< mn > 4 < / mn >< m s u p >< mi > v < / mi >< mn > 3 < / mn >< / m s u p >< m o > − < / m o >< mn > 64 < / mn >< m s u p >< mi > v < / mi >< mn > 7 < / mn >< / m s u p >< / m ro w >< m ro w >< mn > 3 < / mn >< mi > v < / mi >< m o > − < / m o >< mn > 256 < / mn >< m s u p >< mi > v < / mi >< mn > 9 < / mn >< / m s u p >< / m ro w >< / m f r a c >< mi > d < / mi >< mi > v < / mi >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > ∫ 3 v − 256 v 9 v − 16 v 2 + 4 v 3 − 64 v 7 d v < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 2.3534 e m ; v er t i c a l − a l i g n : − 0.8622 e m ; " >< / s p an >< s p an c l a ss = " m o p o p − sy mb o ll a r g e − o p " s t y l e = " ma r g in − r i g h t : 0.44445 e m ; p os i t i o n : re l a t i v e ; t o p : − 0.0011 e m ; " > ∫ < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.4911 e m ; " >< s p an s t y l e = " t o p : − 2.314 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 3 < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 256 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.7401 e m ; " >< s p an s t y l e = " t o p : − 2.989 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 9 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 16 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 2 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 4 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 3 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 64 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 7 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.7693 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > d < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / p >< h 2 >< s t ro n g > Q : Wha t i s t h e f ina l res u lt o f t h e in t e g r a l ? < / s t ro n g >< / h 2 >< p > A : T h e f ina l res u lt o f t h e in t e g r a l i s :< / p >< p c l a ss = ′ ka t e x − b l oc k ′ >< s p an c l a ss = " ka t e x − d i s pl a y " >< s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " d i s pl a y = " b l oc k " >< se man t i cs >< m ro w >< m f r a c >< mn > 1 < / mn >< m s q r t >< mn > 3 < / mn >< / m s q r t >< / m f r a c >< mi > a rc t an < / mi >< m o > < / m o >< m ro w >< m o f e n ce = " t r u e " > ( < / m o >< m f r a c >< m ro w >< mi > t an < / mi >< m o > < / m o >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< / m ro w >< m s q r t >< mn > 3 < / mn >< / m s q r t >< / m f r a c >< m o f e n ce = " t r u e " > ) < / m o >< / m ro w >< m o > + < / m o >< m f r a c >< mn > 3 < / mn >< mn > 2 < / mn >< / m f r a c >< m o > + < / m o >< m f r a c >< mn > 1 < / mn >< mn > 2 < / mn >< / m f r a c >< m s u p >< m ro w >< mi > t an < / mi >< m o > < / m o >< / m ro w >< mn > 2 < / mn >< / m s u p >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< m o > + < / m o >< mi > C < / mi >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > 3 1 arctan ( 3 tan ( x ) ) + 2 3 + 2 1 tan 2 ( x ) + C < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 2.4 e m ; v er t i c a l − a l i g n : − 0.95 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " >< s p an s t y l e = " t o p : − 2.2028 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d s q r t " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.9072 e m ; " >< s p an c l a ss = " s vg − a l i g n " s t y l e = " t o p : − 3 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " s t y l e = " p a dd in g − l e f t : 0.833 e m ; " >< s p an c l a ss = " m or d " > 3 < / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 2.8672 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " hi d e − t ai l " s t y l e = " min − w i d t h : 0.853 e m ; h e i g h t : 1.08 e m ; " >< s vgx m l n s = " h ttp : // www . w 3. or g /2000/ s vg " w i d t h = "400 e m " h e i g h t = "1.08 e m " v i e wB o x = "004000001080" p reser v e A s p ec tR a t i o = " x M inY M in s l i ce " >< p a t h d = " M 95 , 702 c − 2.7 , 0 , − 7.17 , − 2.7 , − 13.5 , − 8 c − 5.8 , − 5.3 , − 9.5 , − 10 , − 9.5 , − 14 c 0 , − 2 , 0.3 , − 3.3 , 1 , − 4 c 1.3 , − 2.7 , 23.83 , − 20.7 , 67.5 , − 54 c 44.2 , − 33.3 , 65.8 , − 50.3 , 66.5 , − 51 c 1.3 , − 1.3 , 3 , − 2 , 5 , − 2 c 4.7 , 0 , 8.7 , 3.3 , 12 , 10 s 173 , 378 , 173 , 378 c 0.7 , 0 , 35.3 , − 71 , 104 , − 213 c 68.7 , − 142 , 137.5 , − 285 , 206.5 , − 429 c 69 , − 144 , 104.5 , − 217.7 , 106.5 , − 221 l 0 − 0 c 5.3 , − 9.3 , 12 , − 14 , 20 , − 14 H 400000 v 40 H 845.2724 s − 225.272 , 467 , − 225.272 , 467 s − 235 , 486 , − 235 , 486 c − 2.7 , 4.7 , − 9 , 7 , − 19 , 7 c − 6 , 0 , − 10 , − 1 , − 12 , − 3 s − 194 , − 422 , − 194 , − 422 s − 65 , 47 , − 65 , 47 z M 83480 h 400000 v 40 h − 400000 z "/ >< / s vg >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.1328 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 1 < / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.93 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m o p " > a rc t an < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " minn er " >< s p an c l a ss = " m o p e n d e l im ce n t er " s t y l e = " t o p : 0 e m ; " >< s p an c l a ss = " d e l im s i z in g s i ze 3" > ( < / s p an >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.427 e m ; " >< s p an s t y l e = " t o p : − 2.2028 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d s q r t " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.9072 e m ; " >< s p an c l a ss = " s vg − a l i g n " s t y l e = " t o p : − 3 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " s t y l e = " p a dd in g − l e f t : 0.833 e m ; " >< s p an c l a ss = " m or d " > 3 < / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 2.8672 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " hi d e − t ai l " s t y l e = " min − w i d t h : 0.853 e m ; h e i g h t : 1.08 e m ; " >< s vgx m l n s = " h ttp : // www . w 3. or g /2000/ s vg " w i d t h = "400 e m " h e i g h t = "1.08 e m " v i e wB o x = "004000001080" p reser v e A s p ec tR a t i o = " x M inY M in s l i ce " >< p a t h d = " M 95 , 702 c − 2.7 , 0 , − 7.17 , − 2.7 , − 13.5 , − 8 c − 5.8 , − 5.3 , − 9.5 , − 10 , − 9.5 , − 14 c 0 , − 2 , 0.3 , − 3.3 , 1 , − 4 c 1.3 , − 2.7 , 23.83 , − 20.7 , 67.5 , − 54 c 44.2 , − 33.3 , 65.8 , − 50.3 , 66.5 , − 51 c 1.3 , − 1.3 , 3 , − 2 , 5 , − 2 c 4.7 , 0 , 8.7 , 3.3 , 12 , 10 s 173 , 378 , 173 , 378 c 0.7 , 0 , 35.3 , − 71 , 104 , − 213 c 68.7 , − 142 , 137.5 , − 285 , 206.5 , − 429 c 69 , − 144 , 104.5 , − 217.7 , 106.5 , − 221 l 0 − 0 c 5.3 , − 9.3 , 12 , − 14 , 20 , − 14 H 400000 v 40 H 845.2724 s − 225.272 , 467 , − 225.272 , 467 s − 235 , 486 , − 235 , 486 c − 2.7 , 4.7 , − 9 , 7 , − 19 , 7 c − 6 , 0 , − 10 , − 1 , − 12 , − 3 s − 194 , − 422 , − 194 , − 422 s − 65 , 47 , − 65 , 47 z M 83480 h 400000 v 40 h − 400000 z "/ >< / s vg >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.1328 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p " > t an < / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.93 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m c l ose d e l im ce n t er " s t y l e = " t o p : 0 e m ; " >< s p an c l a ss = " d e l im s i z in g s i ze 3" > ) < / s p an >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 2.0074 e m ; v er t i c a l − a l i g n : − 0.686 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " >< s p an s t y l e = " t o p : − 2.314 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 2 < / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 3 < / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.686 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 2.0074 e m ; v er t i c a l − a l i g n : − 0.686 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m o p e nn u ll d e l imi t er " >< / s p an >< s p an c l a ss = " m f r a c " >< s p an c l a ss = " v l i s t − t v l i s t − t 2" >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 1.3214 e m ; " >< s p an s t y l e = " t o p : − 2.314 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 2 < / s p an >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.23 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " f r a c − l in e " s t y l e = " b or d er − b o tt o m − w i d t h : 0.04 e m ; " >< / s p an >< / s p an >< s p an s t y l e = " t o p : − 3.677 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 3 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d " > 1 < / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − s " >< / s p an >< / s p an >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.686 e m ; " >< s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m c l ose n u ll d e l imi t er " >< / s p an >< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m o p " >< s p an c l a ss = " m o p " > t an < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8641 e m ; " >< s p an s t y l e = " t o p : − 3.113 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 2 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.6833 e m ; " >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.07153 e m ; " > C < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / p >< h 2 >< s t ro n g > Q : Wha t a re t h e k eys t e p s in so l v in g t h e in t e g r a l o f s in ( x ) / s in ( 3 x )? < / s t ro n g >< / h 2 >< p > A : T h e k eys t e p s in so l v in g t h e in t e g r a l o f s in ( x ) / s in ( 3 x ) a re :< / p >< o l >< l i > R e w r i t es in ( 3 x ) a s < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mn > 3 < / mn >< mi > s in < / mi >< m o > < / m o >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< m o > − < / m o >< mn > 4 < / mn >< m s u p >< m ro w >< mi > s in < / mi >< m o > < / m o >< / m ro w >< mn > 3 < / mn >< / m s u p >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > 3 sin ( x ) − 4 sin 3 ( x ) < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 1 e m ; v er t i c a l − a l i g n : − 0.25 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 3 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m o p " > s in < / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 1.1219 e m ; v er t i c a l − a l i g n : − 0.25 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 4 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.1667 e m ; " >< / s p an >< s p an c l a ss = " m o p " >< s p an c l a ss = " m o p " > s in < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8719 e m ; " >< s p an s t y l e = " t o p : − 3.1208 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 3 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< l i > C an ce l o u t s in ( x ) an d m u lt i pl y t h e n u m er a t or an dd e n o mina t or b y < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< m s u p >< m ro w >< mi > sec < / mi >< m o > < / m o >< / m ro w >< mn > 2 < / mn >< / m s u p >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > sec 2 ( x ) < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 1.0641 e m ; v er t i c a l − a l i g n : − 0.25 e m ; " >< / s p an >< s p an c l a ss = " m o p " >< s p an c l a ss = " m o p " > sec < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 2 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< l i > A ppl y t h es u b s t i t u t i o n < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mi > u < / mi >< m o >=< / m o >< mi > s in < / mi >< m o > < / m o >< m os t re t c h y = " f a l se " > ( < / m o >< mi > x < / mi >< m os t re t c h y = " f a l se " > ) < / m o >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > u = sin ( x ) < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< s p an c l a ss = " m re l " >=< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 1 e m ; v er t i c a l − a l i g n : − 0.25 e m ; " >< / s p an >< s p an c l a ss = " m o p " > s in < / s p an >< s p an c l a ss = " m o p e n " > ( < / s p an >< s p an c l a ss = " m or d ma t hn or ma l " > x < / s p an >< s p an c l a ss = " m c l ose " > ) < / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< l i > S im pl i f y t h ee x p ress i o nb y m u lt i pl y in g t h e n u m er a t or an dd e n o mina t or b y < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mn > 1 < / mn >< m o > + < / m o >< mn > 4 < / mn >< m s u p >< mi > u < / mi >< mn > 2 < / mn >< / m s u p >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > 1 + 4 u 2 < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v er t i c a l − a l i g n : − 0.0833 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 1 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > + < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 4 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 2 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< l i > S im pl i f y t h ee x p ress i o n f u r t h er b yco mbinin g l ik e t er m s an d t h e nm u lt i pl y in g t h e n u m er a t or an dd e n o mina t or b y < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mn > 1 < / mn >< m o > − < / m o >< mn > 16 < / mn >< m s u p >< mi > u < / mi >< mn > 4 < / mn >< / m s u p >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > 1 − 16 u 4 < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.7278 e m ; v er t i c a l − a l i g n : − 0.0833 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 1 < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< s p an c l a ss = " mbin " > − < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2222 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " >< / s p an >< s p an c l a ss = " m or d " > 16 < / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 4 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< l i > E v a l u a t e t h e in t e g r a l b y a ppl y in g t h es u b s t i t u t i o n < s p an c l a ss = " ka t e x " >< s p an c l a ss = " ka t e x − ma t hm l " >< ma t h x m l n s = " h ttp : // www . w 3. or g /1998/ M a t h / M a t h M L " >< se man t i cs >< m ro w >< mi > v < / mi >< m o >=< / m o >< m s u p >< mi > u < / mi >< mn > 3 < / mn >< / m s u p >< / m ro w >< ann o t a t i o n e n co d in g = " a ppl i c a t i o n / x − t e x " > v = u 3 < / ann o t a t i o n >< / se man t i cs >< / ma t h >< / s p an >< s p an c l a ss = " ka t e x − h t m l " a r ia − hi dd e n = " t r u e " >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.4306 e m ; " >< / s p an >< s p an c l a ss = " m or d ma t hn or ma l " s t y l e = " ma r g in − r i g h t : 0.03588 e m ; " > v < / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< s p an c l a ss = " m re l " >=< / s p an >< s p an c l a ss = " m s p a ce " s t y l e = " ma r g in − r i g h t : 0.2778 e m ; " >< / s p an >< / s p an >< s p an c l a ss = " ba se " >< s p an c l a ss = " s t r u t " s t y l e = " h e i g h t : 0.8141 e m ; " >< / s p an >< s p an c l a ss = " m or d " >< s p an c l a ss = " m or d ma t hn or ma l " > u < / s p an >< s p an c l a ss = " m s u p s u b " >< s p an c l a ss = " v l i s t − t " >< s p an c l a ss = " v l i s t − r " >< s p an c l a ss = " v l i s t " s t y l e = " h e i g h t : 0.8141 e m ; " >< s p an s t y l e = " t o p : − 3.063 e m ; ma r g in − r i g h t : 0.05 e m ; " >< s p an c l a ss = " p s t r u t " s t y l e = " h e i g h t : 2.7 e m ; " >< / s p an >< s p an c l a ss = " s i z in g rese t − s i ze 6 s i ze 3 m t i g h t " >< s p an c l a ss = " m or d m t i g h t " > 3 < / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an >< / s p an > . < / l i >< / o l >< h 2 >< s t ro n g > Q : Wha t a re t h e b e n e f i t so f u s in g t h e a lt er na t i v eso l u t i o n t o t h e in t e g r a l o f s in ( x ) / s in ( 3 x )? < / s t ro n g >< / h 2 >< p > A : T h e b e n e f i t so f u s in g t h e a lt er na t i v eso l u t i o n t o t h e in t e g r a l o f s in ( x ) / s in ( 3 x ) a re :< / p >< o l >< l i > I tp ro v i d es ana lt er na t i v e a pp ro a c h t oso l v in g t h e in t e g r a l . < / l i >< l i > I t c anb e u se d t o v er i f y t h e t r a d i t i o na l so l u t i o n . < / l i >< l i > I t c anb e u se d t o f in d n e w an d in t eres t in g so l u t i o n s t o t h e in t e g r a l . < / l i >< / o l >< h 2 >< s t ro n g > Q : Wha t a re t h e l imi t a t i o n so f t h e a lt er na t i v eso l u t i o n t o t h e in t e g r a l o f s in ( x ) / s in ( 3 x )? < / s t ro n g >< / h 2 >< p > A : T h e l imi t a t i o n so f t h e a lt er na t i v eso l u t i o n t o t h e in t e g r a l o f s in ( x ) / s in ( 3 x ) a re :< / p >< o l >< l i > I t ma y b e m oreco m pl e x t han t h e t r a d i t i o na l so l u t i o n . < / l i >< l i > I t ma yre q u i re m ore a d v an ce d ma t h e ma t i c a lt ec hni q u es . < / l i >< l i > I t ma y n o t b e a s w i d e l y kn o w n or a cce pt e d a s t h e t r a d i t i o na l so l u t i o n . < / l i >< / o l >