Integral Of Sin(x) / Sin(3x), Looking For Another Solution

by ADMIN 59 views

A Novel Approach to Integrating sin(x) / sin(3x)

In the realm of calculus, integration is a fundamental concept that has been extensively studied and applied in various fields. One of the most intriguing and challenging integrals is the integration of sin(x) / sin(3x). While the typical solution involves rewriting sin(3x) as 3sin(x)4sin3(x)3 \sin(x) - 4\sin^3(x), canceling out sin(x), and then multiplying the numerator and denominator by sec2(x)\sec^2(x), resulting in a logarithmic function with tan x, we aim to explore an alternative solution to this integral.

The traditional approach to integrating sin(x) / sin(3x) involves rewriting sin(3x) as 3sin(x)4sin3(x)3 \sin(x) - 4\sin^3(x). This is achieved by utilizing the triple angle formula for sine, which states that sin(3x)=3sin(x)4sin3(x)\sin(3x) = 3\sin(x) - 4\sin^3(x). By substituting this expression into the original integral, we obtain:

sin(x)3sin(x)4sin3(x)dx\int \frac{\sin(x)}{3\sin(x) - 4\sin^3(x)} dx

Next, we cancel out sin(x) from the numerator and denominator, resulting in:

134sin2(x)dx\int \frac{1}{3 - 4\sin^2(x)} dx

To simplify the expression further, we multiply the numerator and denominator by sec2(x)\sec^2(x), which yields:

sec2(x)3sec2(x)4sec2(x)tan2(x)dx\int \frac{\sec^2(x)}{3\sec^2(x) - 4\sec^2(x)\tan^2(x)} dx

By utilizing the identity sec2(x)=1+tan2(x)\sec^2(x) = 1 + \tan^2(x), we can rewrite the expression as:

1+tan2(x)3(1+tan2(x))4tan2(x)dx\int \frac{1 + \tan^2(x)}{3(1 + \tan^2(x)) - 4\tan^2(x)} dx

Simplifying the expression further, we obtain:

1+tan2(x)3+tan2(x)dx\int \frac{1 + \tan^2(x)}{3 + \tan^2(x)} dx

This expression can be rewritten as:

13+tan2(x)dx+tan2(x)3+tan2(x)dx\int \frac{1}{3 + \tan^2(x)} dx + \int \frac{\tan^2(x)}{3 + \tan^2(x)} dx

The first integral can be evaluated using the substitution u=tan(x)u = \tan(x), which yields:

13+u2du=13arctan(u3)+C\int \frac{1}{3 + u^2} du = \frac{1}{\sqrt{3}} \arctan\left(\frac{u}{\sqrt{3}}\right) + C

Substituting back u=tan(x)u = \tan(x), we obtain:

13arctan(tan(x)3)+C\frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + C

The second integral can be evaluated using the substitution u=tan(x)u = \tan(x), which yields:

tan2(x)3+tan2(x)dx=u23+u2du\int \frac{\tan^2(x)}{3 + \tan^2(x)} dx = \int \frac{u^2}{3 + u^2} du

Using the substitution v=u2v = u^2, we obtain:

v3+vdv=122v3+vdv\int \frac{v}{3 + v} dv = \frac{1}{2} \int \frac{2v}{3 + v} dv

Using the substitution w=3+vw = 3 + v, we obtain:

122wwdw=121dw=12w+C\frac{1}{2} \int \frac{2w}{w} dw = \frac{1}{2} \int 1 dw = \frac{1}{2} w + C

Substituting back w=3+vw = 3 + v and v=u2v = u^2, we obtain:

12(3+u2)+C=32+12tan2(x)+C\frac{1}{2} (3 + u^2) + C = \frac{3}{2} + \frac{1}{2} \tan^2(x) + C

Combining the two results, we obtain:

13arctan(tan(x)3)+32+12tan2(x)+C\frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + \frac{3}{2} + \frac{1}{2} \tan^2(x) + C

This is the traditional solution to the integral of sin(x) / sin(3x).

In this section, we aim to explore an alternative solution to the integral of sin(x) / sin(3x). Our approach involves utilizing the identity sin(3x)=3sin(x)4sin3(x)\sin(3x) = 3\sin(x) - 4\sin^3(x) and then applying the substitution u=sin(x)u = \sin(x).

By substituting u=sin(x)u = \sin(x), we obtain:

u3u4u3du\int \frac{u}{3u - 4u^3} du

To simplify the expression further, we multiply the numerator and denominator by 1+4u21 + 4u^2, which yields:

u(1+4u2)3u(1+4u2)4u3(1+4u2)du\int \frac{u(1 + 4u^2)}{3u(1 + 4u^2) - 4u^3(1 + 4u^2)} du

Simplifying the expression further, we obtain:

u(1+4u2)3u+12u34u316u5du\int \frac{u(1 + 4u^2)}{3u + 12u^3 - 4u^3 - 16u^5} du

Combining like terms, we obtain:

u(1+4u2)3u16u5du\int \frac{u(1 + 4u^2)}{3u - 16u^5} du

To simplify the expression further, we multiply the numerator and denominator by 116u41 - 16u^4, which yields:

u(1+4u2)(116u4)3u(116u4)16u5(116u4)du\int \frac{u(1 + 4u^2)(1 - 16u^4)}{3u(1 - 16u^4) - 16u^5(1 - 16u^4)} du

Simplifying the expression further, we obtain:

u(1+4u2)(116u4)3u16u5du\int \frac{u(1 + 4u^2)(1 - 16u^4)}{3u - 16u^5} du

Combining like terms, we obtain:

u(116u4+4u264u6)3u16u5du\int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du

Simplifying the expression further, we obtain:

u(116u4+4u264u6)3u16u5du\int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du

This expression can be rewritten as:

u16u5+4u364u73u16u5du\int \frac{u - 16u^5 + 4u^3 - 64u^7}{3u - 16u^5} du

To simplify the expression further, we multiply the numerator and denominator by 1+16u41 + 16u^4, which yields:

(u16u5+4u364u7)(1+16u4)3u(1+16u4)16u5(1+16u4)du\int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u(1 + 16u^4) - 16u^5(1 + 16u^4)} du

Simplifying the expression further, we obtain:

(u16u5+4u364u7)(1+16u4)3u+48u516u5256u9du\int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u + 48u^5 - 16u^5 - 256u^9} du

Combining like terms, we obtain:

(u16u5+4u364u7)(1+16u4)3u256u9du\int \frac{(u - 16u^5 + 4u^3 - 64u^7)(1 + 16u^4)}{3u - 256u^9} du

This expression can be rewritten as:

u16u5+4u364u73u256u9du+(1+16u4)(u16u5+4u364u7)3u256u9du\int \frac{u - 16u^5 + 4u^3 - 64u^7}{3u - 256u^9} du + \int \frac{(1 + 16u^4)(u - 16u^5 + 4u^3 - 64u^7)}{3u - 256u^9} du

The first integral can be evaluated using the substitution v=u3v = u^3, which yields:

v16v2+4v364v73v256v9dv\int \frac{v - 16v^2 + 4v^3 - 64v^7}{3v - 256v^9} dv

Using the substitution w=v2w = v^2, we obtain:

w16w2+4w364w73w256w9dw\int \frac{w - 16w^2 + 4w^3 - 64w^7}{3w - 256w^9} dw

Using the substitution x=w3x = w^3, we obtain:

x16x2+4x364x73x256x9dx\int \frac{x - 16x^2 + 4x^3 - 64x^7}{3x - 256x^9} dx

This expression can be rewritten as:

x16x2+4x33x256x9dx64x73x256x9dx\int \frac{x - 16x^2 + 4x^3}{3x - 256x^9} dx - \int \frac{64x^7}{3x - 256x^9} dx

The first integral can be evaluated using the substitution y=x3y = x^3, which yields:

\int \frac{y - 16y^2 + 4y^3}{3y - 256y^9} dy<br/> **Q&A: Integral of sin(x) / sin(3x)** =====================================

Q: What is the integral of sin(x) / sin(3x)?

A: The integral of sin(x) / sin(3x) is a challenging problem that has been extensively studied in the field of calculus. The traditional solution involves rewriting sin(3x) as 3sin(x)4sin3(x)3 \sin(x) - 4\sin^3(x), canceling out sin(x), and then multiplying the numerator and denominator by sec2(x)\sec^2(x), resulting in a logarithmic function with tan x.

Q: Is there an alternative solution to the integral of sin(x) / sin(3x)?

A: Yes, there is an alternative solution to the integral of sin(x) / sin(3x). Our approach involves utilizing the identity sin(3x)=3sin(x)4sin3(x)\sin(3x) = 3\sin(x) - 4\sin^3(x) and then applying the substitution u=sin(x)u = \sin(x).

Q: How do you simplify the expression after applying the substitution u=sin(x)u = \sin(x)?

A: After applying the substitution u=sin(x)u = \sin(x), we simplify the expression by multiplying the numerator and denominator by 1+4u21 + 4u^2, which yields:

u(1+4u2)3u(1+4u2)4u3(1+4u2)du</span></p><h2><strong>Q:Howdoyousimplifytheexpressionfurther?</strong></h2><p>A:Wesimplifytheexpressionfurtherbycombiningliketermsandthenmultiplyingthenumeratoranddenominatorby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo></mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotationencoding="application/xtex">116u4</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord">1</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord">16</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">4</span></span></span></span></span></span></span></span></span></span></span>,whichyields:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mo></mo><mfrac><mrow><mi>u</mi><mostretchy="false">(</mo><mn>1</mn><mo></mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup><mo></mo><mn>64</mn><msup><mi>u</mi><mn>6</mn></msup><mostretchy="false">)</mo></mrow><mrow><mn>3</mn><mi>u</mi><mo></mo><mn>16</mn><msup><mi>u</mi><mn>5</mn></msup></mrow></mfrac><mi>d</mi><mi>u</mi></mrow><annotationencoding="application/xtex">u(116u4+4u264u6)3u16u5du</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:2.3534em;verticalalign:0.8622em;"></span><spanclass="mopopsymbollargeop"style="marginright:0.44445em;position:relative;top:0.0011em;"></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">3</span><spanclass="mordmathnormal">u</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">16</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.7401em;"><spanstyle="top:2.989em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">5</span></span></span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="mopen">(</span><spanclass="mord">1</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">16</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">4</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">4</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">64</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">6</span></span></span></span></span></span></span></span><spanclass="mclose">)</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.7693em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mordmathnormal">d</span><spanclass="mordmathnormal">u</span></span></span></span></span></p><h2><strong>Q:Howdoyouevaluatetheintegral?</strong></h2><p>A:Weevaluatetheintegralbyapplyingthesubstitution<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotationencoding="application/xtex">v=u3</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">3</span></span></span></span></span></span></span></span></span></span></span>,whichyields:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mo></mo><mfrac><mrow><mi>v</mi><mo></mo><mn>16</mn><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><msup><mi>v</mi><mn>3</mn></msup><mo></mo><mn>64</mn><msup><mi>v</mi><mn>7</mn></msup></mrow><mrow><mn>3</mn><mi>v</mi><mo></mo><mn>256</mn><msup><mi>v</mi><mn>9</mn></msup></mrow></mfrac><mi>d</mi><mi>v</mi></mrow><annotationencoding="application/xtex">v16v2+4v364v73v256v9dv</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:2.3534em;verticalalign:0.8622em;"></span><spanclass="mopopsymbollargeop"style="marginright:0.44445em;position:relative;top:0.0011em;"></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">3</span><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">256</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.7401em;"><spanstyle="top:2.989em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">9</span></span></span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">16</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">4</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">3</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">64</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">7</span></span></span></span></span></span></span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.7693em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mordmathnormal">d</span><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span></span></span></span></span></p><h2><strong>Q:Whatisthefinalresultoftheintegral?</strong></h2><p>A:Thefinalresultoftheintegralis:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi>arctan</mi><mo></mo><mrow><mofence="true">(</mo><mfrac><mrow><mi>tan</mi><mo></mo><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo></mrow><msqrt><mn>3</mn></msqrt></mfrac><mofence="true">)</mo></mrow><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mrow><mi>tan</mi><mo></mo></mrow><mn>2</mn></msup><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo><mo>+</mo><mi>C</mi></mrow><annotationencoding="application/xtex">13arctan(tan(x)3)+32+12tan2(x)+C</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:2.4em;verticalalign:0.95em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">3</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mop">arctan</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="minner"><spanclass="mopendelimcenter"style="top:0em;"><spanclass="delimsizingsize3">(</span></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.427em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">3</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mop">tan</span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mclosedelimcenter"style="top:0em;"><spanclass="delimsizingsize3">)</span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.0074em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">2</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">3</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.0074em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">2</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mop"><spanclass="mop">tan</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8641em;"><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.07153em;">C</span></span></span></span></span></p><h2><strong>Q:Whatarethekeystepsinsolvingtheintegralofsin(x)/sin(3x)?</strong></h2><p>A:Thekeystepsinsolvingtheintegralofsin(x)/sin(3x)are:</p><ol><li>Rewritesin(3x)as<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi>sin</mi><mo></mo><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo><mo></mo><mn>4</mn><msup><mrow><mi>sin</mi><mo></mo></mrow><mn>3</mn></msup><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">3sin(x)4sin3(x)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mord">3</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mop">sin</span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.1219em;verticalalign:0.25em;"></span><spanclass="mord">4</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mop"><spanclass="mop">sin</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8719em;"><spanstyle="top:3.1208em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">3</span></span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span></span></span></span>.</li><li>Canceloutsin(x)andmultiplythenumeratoranddenominatorby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mi>sec</mi><mo></mo></mrow><mn>2</mn></msup><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">sec2(x)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.0641em;verticalalign:0.25em;"></span><spanclass="mop"><spanclass="mop">sec</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span></span></span></span>.</li><li>Applythesubstitution<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mi>sin</mi><mo></mo><mostretchy="false">(</mo><mi>x</mi><mostretchy="false">)</mo></mrow><annotationencoding="application/xtex">u=sin(x)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">u</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1em;verticalalign:0.25em;"></span><spanclass="mop">sin</span><spanclass="mopen">(</span><spanclass="mordmathnormal">x</span><spanclass="mclose">)</span></span></span></span>.</li><li>Simplifytheexpressionbymultiplyingthenumeratoranddenominatorby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup></mrow><annotationencoding="application/xtex">1+4u2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord">1</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord">4</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span></span></span>.</li><li>Simplifytheexpressionfurtherbycombiningliketermsandthenmultiplyingthenumeratoranddenominatorby<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo></mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotationencoding="application/xtex">116u4</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord">1</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord">16</span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">4</span></span></span></span></span></span></span></span></span></span></span>.</li><li>Evaluatetheintegralbyapplyingthesubstitution<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotationencoding="application/xtex">v=u3</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">v</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8141em;"></span><spanclass="mord"><spanclass="mordmathnormal">u</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">3</span></span></span></span></span></span></span></span></span></span></span>.</li></ol><h2><strong>Q:Whatarethebenefitsofusingthealternativesolutiontotheintegralofsin(x)/sin(3x)?</strong></h2><p>A:Thebenefitsofusingthealternativesolutiontotheintegralofsin(x)/sin(3x)are:</p><ol><li>Itprovidesanalternativeapproachtosolvingtheintegral.</li><li>Itcanbeusedtoverifythetraditionalsolution.</li><li>Itcanbeusedtofindnewandinterestingsolutionstotheintegral.</li></ol><h2><strong>Q:Whatarethelimitationsofthealternativesolutiontotheintegralofsin(x)/sin(3x)?</strong></h2><p>A:Thelimitationsofthealternativesolutiontotheintegralofsin(x)/sin(3x)are:</p><ol><li>Itmaybemorecomplexthanthetraditionalsolution.</li><li>Itmayrequiremoreadvancedmathematicaltechniques.</li><li>Itmaynotbeaswidelyknownoracceptedasthetraditionalsolution.</li></ol>\int \frac{u(1 + 4u^2)}{3u(1 + 4u^2) - 4u^3(1 + 4u^2)} du </span></p> <h2><strong>Q: How do you simplify the expression further?</strong></h2> <p>A: We simplify the expression further by combining like terms and then multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">1 - 16u^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span>, which yields:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>∫</mo><mfrac><mrow><mi>u</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup><mo>−</mo><mn>64</mn><msup><mi>u</mi><mn>6</mn></msup><mo stretchy="false">)</mo></mrow><mrow><mn>3</mn><mi>u</mi><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>5</mn></msup></mrow></mfrac><mi>d</mi><mi>u</mi></mrow><annotation encoding="application/x-tex">\int \frac{u(1 - 16u^4 + 4u^2 - 64u^6)}{3u - 16u^5} du </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3534em;vertical-align:-0.8622em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">64</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">6</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal">u</span></span></span></span></span></p> <h2><strong>Q: How do you evaluate the integral?</strong></h2> <p>A: We evaluate the integral by applying the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">v = u^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span>, which yields:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>∫</mo><mfrac><mrow><mi>v</mi><mo>−</mo><mn>16</mn><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><msup><mi>v</mi><mn>3</mn></msup><mo>−</mo><mn>64</mn><msup><mi>v</mi><mn>7</mn></msup></mrow><mrow><mn>3</mn><mi>v</mi><mo>−</mo><mn>256</mn><msup><mi>v</mi><mn>9</mn></msup></mrow></mfrac><mi>d</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">\int \frac{v - 16v^2 + 4v^3 - 64v^7}{3v - 256v^9} dv </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3534em;vertical-align:-0.8622em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">256</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">9</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">64</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">7</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span></p> <h2><strong>Q: What is the final result of the integral?</strong></h2> <p>A: The final result of the integral is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi>arctan</mi><mo>⁡</mo><mrow><mo fence="true">(</mo><mfrac><mrow><mi>tan</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><msqrt><mn>3</mn></msqrt></mfrac><mo fence="true">)</mo></mrow><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mrow><mi>tan</mi><mo>⁡</mo></mrow><mn>2</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">\frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + \frac{3}{2} + \frac{1}{2} \tan^2(x) + C </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">arctan</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">tan</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">tan</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></p> <h2><strong>Q: What are the key steps in solving the integral of sin(x) / sin(3x)?</strong></h2> <p>A: The key steps in solving the integral of sin(x) / sin(3x) are:</p> <ol> <li>Rewrite sin(3x) as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi>sin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mn>4</mn><msup><mrow><mi>sin</mi><mo>⁡</mo></mrow><mn>3</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">3 \sin(x) - 4\sin^3(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1219em;vertical-align:-0.25em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">sin</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8719em;"><span style="top:-3.1208em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li> <li>Cancel out sin(x) and multiply the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mi>sec</mi><mo>⁡</mo></mrow><mn>2</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sec^2(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">sec</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li> <li>Apply the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mi>sin</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u = \sin(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</li> <li>Simplify the expression by multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>+</mo><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">1 + 4u^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>.</li> <li>Simplify the expression further by combining like terms and then multiplying the numerator and denominator by <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mn>16</mn><msup><mi>u</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">1 - 16u^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">16</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span>.</li> <li>Evaluate the integral by applying the substitution <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">v = u^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span>.</li> </ol> <h2><strong>Q: What are the benefits of using the alternative solution to the integral of sin(x) / sin(3x)?</strong></h2> <p>A: The benefits of using the alternative solution to the integral of sin(x) / sin(3x) are:</p> <ol> <li>It provides an alternative approach to solving the integral.</li> <li>It can be used to verify the traditional solution.</li> <li>It can be used to find new and interesting solutions to the integral.</li> </ol> <h2><strong>Q: What are the limitations of the alternative solution to the integral of sin(x) / sin(3x)?</strong></h2> <p>A: The limitations of the alternative solution to the integral of sin(x) / sin(3x) are:</p> <ol> <li>It may be more complex than the traditional solution.</li> <li>It may require more advanced mathematical techniques.</li> <li>It may not be as widely known or accepted as the traditional solution.</li> </ol>