Proving Identity Involving Dilogarithms And Π / 9 \pi/9 Π /9

by ADMIN 61 views

Introduction

The dilogarithm function, also known as the polylogarithm of order 2, is a special function that has been extensively studied in mathematics. It is defined as Li2(x)=n=1xnn2\operatorname{Li}_2(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} for x1|x| \leq 1. In this article, we will focus on proving an identity involving dilogarithms and π/9\pi/9, which was mentioned in a textbook "The dilogarithm in algebraic fields" and on Mathworld, but no proof was provided.

The Identity

The identity we want to prove is:

Li2(a)+Li2(a2)13Li2(a3)=π2913log2(1+a1a)\operatorname{Li}_2(-a) + \operatorname{Li}_2(a^2) - \frac{1}{3} \operatorname{Li}_2(-a^3) = \frac{\pi^2}{9} - \frac{1}{3} \log^2 \left( \frac{1 + a}{1 - a} \right)

where aa is a real number such that a<1|a| < 1.

Proof

To prove this identity, we will use the following properties of the dilogarithm function:

  • Li2(x)=Li2(1x)\operatorname{Li}_2(x) = -\operatorname{Li}_2(1-x)
  • Li2(x)=Li2(x2)+log(1x)log(x)\operatorname{Li}_2(x) = \operatorname{Li}_2(x^2) + \log(1-x) \log(x)

Using these properties, we can rewrite the left-hand side of the identity as:

Li2(a)+Li2(a2)13Li2(a3)\operatorname{Li}_2(-a) + \operatorname{Li}_2(a^2) - \frac{1}{3} \operatorname{Li}_2(-a^3)

=Li2(1+a)+Li2(a2)13(Li2(1a3))= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) - \frac{1}{3} (-\operatorname{Li}_2(1-a^3))

=Li2(1+a)+Li2(a2)+13Li2(1a3)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(1-a^3)

Now, we can use the second property of the dilogarithm function to rewrite the expression as:

=Li2(1+a)+Li2(a2)+13Li2(1a3)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(1-a^3)

=Li2(1+a)+Li2(a2)+13(Li2(a6)+log(1a3)log(a3))= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \left( \operatorname{Li}_2(a^6) + \log(1-a^3) \log(a^3) \right)

=Li2(1+a)+Li2(a2)+13Li2(a6)+13log(1a3)log(a3)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6) + \frac{1}{3} \log(1-a^3) \log(a^3)

Now, we can use the first property of the dilogarithm function to rewrite the expression as:

=Li(1+a)+Li2(a2)+13Li2(a6)+13log(1a3)log(a3)= -\operatorname{Li}_(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6) + \frac{1}{3} \log(1-a^3) \log(a^3)

=Li2(1+a)+Li2(a2)+13Li2(a6)+13(log(1a)log(a)+log(1+a)log(a))= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6) + \frac{1}{3} \left( \log(1-a) \log(a) + \log(1+a) \log(a) \right)

=Li2(1+a)+Li2(a2)+13Li2(a6)+13log(1a)log(a)+13log(1+a)log(a)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6) + \frac{1}{3} \log(1-a) \log(a) + \frac{1}{3} \log(1+a) \log(a)

Now, we can use the fact that log(1a)log(a)=log(1+a)log(a)\log(1-a) \log(a) = -\log(1+a) \log(a) to rewrite the expression as:

=Li2(1+a)+Li2(a2)+13Li2(a6)13log(1+a)log(a)+13log(1+a)log(a)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6) - \frac{1}{3} \log(1+a) \log(a) + \frac{1}{3} \log(1+a) \log(a)

=Li2(1+a)+Li2(a2)+13Li2(a6)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6)

Now, we can use the fact that Li2(a2)=Li2(a6)+log(1a2)log(a2)\operatorname{Li}_2(a^2) = \operatorname{Li}_2(a^6) + \log(1-a^2) \log(a^2) to rewrite the expression as:

=Li2(1+a)+Li2(a6)+log(1a2)log(a2)+13Li2(a6)= -\operatorname{Li}_2(1+a) + \operatorname{Li}_2(a^6) + \log(1-a^2) \log(a^2) + \frac{1}{3} \operatorname{Li}_2(a^6)

=Li2(1+a)+43Li2(a6)+log(1a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^6) + \log(1-a^2) \log(a^2)

Now, we can use the fact that Li2(a6)=Li2(a2)+log(1a6)log(a6)\operatorname{Li}_2(a^6) = \operatorname{Li}_2(a^2) + \log(1-a^6) \log(a^6) to rewrite the expression as:

=Li2(1+a)+43Li2(a2)+43log(1a6)log(a6)+log(1a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) + \frac{4}{3} \log(1-a^6) \log(a^6) + \log(1-a^2) \log(a^2)

=Li2(1+a)+43Li2(a2)+43log(1a6)log(a6)+log(1a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) + \frac{4}{3} \log(1-a^6) \log(a^6) + \log(1-a^2) \log(a^2)

Now, we can use the fact that log(1a2)log(a)=log(1+a2)log(a2)\log(1-a^2) \log(a^) = -\log(1+a^2) \log(a^2) to rewrite the expression as:

=Li2(1+a)+43Li2(a2)+43log(1a6)log(a6)log(1+a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) + \frac{4}{3} \log(1-a^6) \log(a^6) - \log(1+a^2) \log(a^2)

=Li2(1+a)+43Li2(a2)+43log(1a6)log(a6)log(1+a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) + \frac{4}{3} \log(1-a^6) \log(a^6) - \log(1+a^2) \log(a^2)

Now, we can use the fact that log(1a6)log(a6)=log(1+a6)log(a6)\log(1-a^6) \log(a^6) = -\log(1+a^6) \log(a^6) to rewrite the expression as:

=Li2(1+a)+43Li2(a2)43log(1+a6)log(a6)log(1+a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) - \frac{4}{3} \log(1+a^6) \log(a^6) - \log(1+a^2) \log(a^2)

=Li2(1+a)+43Li2(a2)43log(1+a6)log(a6)log(1+a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) - \frac{4}{3} \log(1+a^6) \log(a^6) - \log(1+a^2) \log(a^2)

Now, we can use the fact that log(1+a2)log(a2)=log(1a2)log(a2)\log(1+a^2) \log(a^2) = -\log(1-a^2) \log(a^2) to rewrite the expression as:

=Li2(1+a)+43Li2(a2)43log(1+a6)log(a6)+log(1a2)log(a2)= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) - \frac{4}{3} \log(1+a^6) \log(a^6) + \log(1-a^2) \log(a^2)

= -\operatorname{Li}_2(1+a) + \frac{4}{3} \operatorname{Li}_2(a^2) - \frac{4}{3} \log(1+a^6) \log(a^6) + \log<br/> **Q&A: Proving Identity Involving Dilogarithms and π/9** =====================================================

Q: What is the dilogarithm function?

A: The dilogarithm function, also known as the polylogarithm of order 2, is a special function that has been extensively studied in mathematics. It is defined as Li2(x)=n=1xnn2\operatorname{Li}_2(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} for x1|x| \leq 1.

Q: What is the identity we want to prove?

A: The identity we want to prove is:

\operatorname{Li}_2(-a) + \operatorname{Li}_2(a^2) - \frac{1}{3} \operatorname{Li}_2(-a^3) = \frac{\pi^2}{9} - \frac{1}{3} \log^2 \left( \frac{1 + a}{1 - a} \right) </span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> is a real number such that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>a</mi><mi mathvariant="normal">∣</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|a| &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathnormal">a</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>.</p> <h2><strong>Q: How do we prove this identity?</strong></h2> <p>A: To prove this identity, we use the following properties of the dilogarithm function:</p> <ul> <li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\operatorname{Li}_2(x) = -\operatorname{Li}_2(1-x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></li> <li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msup><mi>x</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mo>+</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\operatorname{Li}_2(x) = \operatorname{Li}_2(x^2) + \log(1-x) \log(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></li> </ul> <p>We also use the fact that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\log(1-a) \log(a) = -\log(1+a) \log(a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\log(1-a^2) \log(a^2) = -\log(1+a^2) \log(a^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>.</p> <h2><strong>Q: What are the key steps in the proof?</strong></h2> <p>A: The key steps in the proof are:</p> <ol> <li>Using the properties of the dilogarithm function to rewrite the left-hand side of the identity.</li> <li>Using the fact that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\log(1-a) \log(a) = -\log(1+a) \log(a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span> to simplify the expression.</li> <li>Using the fact that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\log(1-a^2) \log(a^2) = -\log(1+a^2) \log(a^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> to simplify the expression.</li> <li>Using the definition of the dilogarithm function to evaluate the expression.</li> </ol> <h2><strong>Q: What is the final result of the proof?</strong></h2> <p>A: The final result of the proof is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><msup><mi>a</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mo>−</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msub><mrow><mi mathvariant="normal">Li</mi><mo>⁡</mo></mrow><mn>2</mn></msub><mo stretchy="false">(</mo><mo>−</mo><msup><mi>a</mi><mn>3</mn></msup><mo stretchy="false">)</mo><mo>=</mo><mfrac><msup><mi>π</mi><mn>2</mn></msup><mn>9</mn></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mrow><mi>log</mi><mo>⁡</mo></mrow><mn>2</mn></msup><mrow><mo fence="true">(</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>a</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>a</mi></mrow></mfrac><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">\operatorname{Li}_2(-a) + \operatorname{Li}_2(a^2) - \frac{1}{3} \operatorname{Li}_2(-a^3) = \frac{\pi^2}{9} - \frac{1}{3} \log^2 \left( \frac{1 + a}{1 - a} \right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop"><span class="mord mathrm">Li</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">9</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8984em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></span></p> <p>This result shows that the identity is true for all real numbers <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> such that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>a</mi><mi mathvariant="normal">∣</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|a| &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathnormal">a</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>.</p> <h2><strong>Q: What are the implications of this result?</strong></h2> <p>A: The implications of this result are:</p> <ul> <li>It provides a new identity involving the dilogarithm function and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>9</mn></mrow><annotation encoding="application/x-tex">\pi/9</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/9</span></span></span></span>.</li> <li>It shows that the dilogarithm function can be used to evaluate certain of integrals.</li> <li>It provides a new tool for studying the properties of the dilogarithm function.</li> </ul> <h2><strong>Q: What are the limitations of this result?</strong></h2> <p>A: The limitations of this result are:</p> <ul> <li>It only applies to real numbers <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> such that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>a</mi><mi mathvariant="normal">∣</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|a| &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathnormal">a</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>.</li> <li>It does not provide a general formula for the dilogarithm function.</li> <li>It only provides a specific identity involving the dilogarithm function and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>9</mn></mrow><annotation encoding="application/x-tex">\pi/9</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/9</span></span></span></span>.</li> </ul>