Sign Of H ′ ( X ) H ( X ) − F ′ ( X ) F ( X ) H'(x)h(x) - F'(x) F(x) H ′ ( X ) H ( X ) − F ′ ( X ) F ( X )

by ADMIN 107 views

Introduction

In this article, we will delve into the analysis of the expression h(x)h(x)f(x)f(x)h'(x)h(x) - f'(x) f(x), where f(x)f(x) and h(x)h(x) are positive functions with positive derivatives. We will explore the conditions under which this expression is positive or negative, and provide a detailed explanation of the underlying mathematical concepts.

Given Conditions

We are given that ξ>0\xi > 0 is a positive constant, and x(0,1/ξ)x \in (0, 1/\xi). Additionally, we know that f(x)>0f(x) > 0 and h(x)>0h(x) > 0 for all xx in the given interval. Furthermore, the derivatives of f(x)f(x) and h(x)h(x) are also positive, i.e., f(x)>0f'(x) > 0 and h(x)>0h'(x) > 0. Lastly, we are given that f(x)=ξxh(x)f(x) = \xi x h(x).

Derivative of f(x)f(x)

To begin our analysis, let's find the derivative of f(x)f(x) using the product rule:

f(x)=ddx(ξxh(x))f'(x) = \frac{d}{dx} (\xi x h(x))

f(x)=ξh(x)+ξxh(x)f'(x) = \xi h(x) + \xi x h'(x)

Expression of Interest

Now, let's examine the expression h(x)h(x)f(x)f(x)h'(x)h(x) - f'(x) f(x). We can substitute the expression for f(x)f'(x) that we derived earlier:

h(x)h(x)f(x)f(x)=h(x)h(x)(ξh(x)+ξxh(x))ξxh(x)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - (\xi h(x) + \xi x h'(x)) \xi x h(x)

Simplifying the Expression

Let's simplify the expression by expanding the product:

h(x)h(x)f(x)f(x)=h(x)h(x)ξ2x2h(x)2ξ2x3h(x)h(x)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - \xi^2 x^2 h(x)^2 - \xi^2 x^3 h'(x) h(x)

Rearranging Terms

We can rearrange the terms to get:

h(x)h(x)f(x)f(x)=h(x)h(x)ξ2x2h(x)2(1+ξx)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - \xi^2 x^2 h(x)^2 (1 + \xi x)

Factoring Out Common Terms

We can factor out common terms to get:

h(x)h(x)f(x)f(x)=h(x)h(x)(1ξ2x2(1+ξx))h'(x)h(x) - f'(x) f(x) = h'(x)h(x) (1 - \xi^2 x^2 (1 + \xi x))

Sign of the Expression

Now, let's analyze the sign of the expression. We know that h(x)>0h'(x) > 0 and h(x)>0h(x) > 0, so the first term is positive. The second term is a product of two factors, and we can analyze the sign of each factor separately.

First Factor

The first factor is 1ξ2x2(1+ξx)1 - \xi^2 x^2 (1 + \xi x). We can analyze the sign of this factor by considering the following cases:

  • If ξx<1\xi x < 1, then 1+ξx<21 + \xi x < 2, and the factor is positive.
  • If $\xi x > $, then 1+ξx>21 + \xi x > 2, and the factor is negative.

Second Factor

The second factor is h(x)h(x)h'(x)h(x). We know that h(x)>0h'(x) > 0 and h(x)>0h(x) > 0, so this factor is always positive.

Combining the Factors

Now, let's combine the factors to determine the sign of the expression. We have:

h(x)h(x)f(x)f(x)=h(x)h(x)(1ξ2x2(1+ξx))h'(x)h(x) - f'(x) f(x) = h'(x)h(x) (1 - \xi^2 x^2 (1 + \xi x))

If ξx<1\xi x < 1, then the first factor is positive, and the expression is positive. If ξx>1\xi x > 1, then the first factor is negative, and the expression is negative.

Conclusion

In conclusion, the sign of the expression h(x)h(x)f(x)f(x)h'(x)h(x) - f'(x) f(x) depends on the value of ξx\xi x. If ξx<1\xi x < 1, then the expression is positive. If ξx>1\xi x > 1, then the expression is negative.

References

  • [1] [Book Title], [Author], [Publisher], [Year]
  • [2] [Book Title], [Author], [Publisher], [Year]

Appendix

This section contains additional information that may be useful for readers who want to delve deeper into the topic.

Derivative of h(x)h(x)

To find the derivative of h(x)h(x), we can use the product rule:

h(x)=ddx(ξxh(x))h'(x) = \frac{d}{dx} (\xi x h(x))

h(x)=ξh(x)+ξxh(x)h'(x) = \xi h(x) + \xi x h'(x)

Expression of Interest

We can substitute the expression for h(x)h'(x) that we derived earlier:

h(x)h(x)f(x)f(x)=h(x)h(x)(ξh(x)+ξxh(x))ξxh(x)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - (\xi h(x) + \xi x h'(x)) \xi x h(x)

Simplifying the Expression

We can simplify the expression by expanding the product:

h(x)h(x)f(x)f(x)=h(x)h(x)ξ2x2h(x)2ξ2x3h(x)h(x)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - \xi^2 x^2 h(x)^2 - \xi^2 x^3 h'(x) h(x)

Rearranging Terms

We can rearrange the terms to get:

h(x)h(x)f(x)f(x)=h(x)h(x)ξ2x2h(x)2(1+ξx)h'(x)h(x) - f'(x) f(x) = h'(x)h(x) - \xi^2 x^2 h(x)^2 (1 + \xi x)

Factoring Out Common Terms

We can factor out common terms to get:

h'(x)h(x) - f'(x) f(x) = h'(x)h(x) (1 - \xi^2 x^2 (1 + \xi x))$<br/> **Q&A: Sign of $h'(x)h(x) - f'(x) f(x)$** =============================================

Q: What is the significance of the expression h&#x27;(x)h(x) - f&#x27;(x) f(x)?

A: The expression h&#x27;(x)h(x) - f&#x27;(x) f(x) is significant because it represents a difference between two quantities, h&#x27;(x)h(x) and f&#x27;(x) f(x). Understanding the sign of this expression is crucial in various mathematical and real-world applications.

Q: What are the given conditions for the functions f(x)f(x) and h(x)h(x)?

A: The given conditions are that \xi &gt; 0 is a positive constant, and x(0,1/ξ)x \in (0, 1/\xi). Additionally, we know that f(x) &gt; 0 and h(x) &gt; 0 for all xx in the given interval. Furthermore, the derivatives of f(x)f(x) and h(x)h(x) are also positive, i.e., f&#x27;(x) &gt; 0 and h&#x27;(x) &gt; 0. Lastly, we are given that f(x)=ξxh(x)f(x) = \xi x h(x).

Q: How do we find the derivative of f(x)f(x)?

A: To find the derivative of f(x)f(x), we use the product rule:

f&#x27;(x) = \frac{d}{dx} (\xi x h(x)) </span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>ξ</mi><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>ξ</mi><mi>x</mi><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f&#x27;(x) = \xi h(x) + \xi x h&#x27;(x) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></p> <h2><strong>Q: What is the expression of interest, and how do we simplify it?</strong></h2> <p>A: The expression of interest is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>. We can simplify it by expanding the product:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>ξ</mi><mn>2</mn></msup><msup><mi>x</mi><mn>2</mn></msup><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>−</mo><msup><mi>ξ</mi><mn>2</mn></msup><msup><mi>x</mi><mn>3</mn></msup><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x) = h&#x27;(x)h(x) - \xi^2 x^2 h(x)^2 - \xi^2 x^3 h&#x27;(x) h(x) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></p> <h2><strong>Q: How do we rearrange the terms in the expression?</strong></h2> <p>A: We can rearrange the terms to get:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>ξ</mi><mn>2</mn></msup><msup><mi>x</mi><mn>2</mn></msup><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x) = h&#x27;(x)h(x) - \xi^2 x^2 h(x)^2 (1 + \xi x) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></p> <h2><strong>Q: How do we factor out common terms in the expression?</strong></h2> <p>A: We can factor out common terms to get:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>ξ</mi><mn>2</mn></msup><msup><mi>x</mi><mn>2</mn></msup><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x) = h&#x27;(x)h(x) (1 - \xi^2 x^2 (1 + \xi x)) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span><span class="mclose">))</span></span></span></span></span></p> <h2><strong>Q: What is the sign of the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>?</strong></h2> <p>A: The sign of the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> depends on the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ξ</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\xi x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span></span></span></span>. If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ξ</mi><mi>x</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\xi x &lt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>, then the expression is positive. If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ξ</mi><mi>x</mi><mo>&gt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\xi x &gt; 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.04601em;">ξ</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>, then the expression is negative.</p> <h2><strong>Q: What are the implications of the sign of the expression?</strong></h2> <p>A: The implications of the sign of the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> are significant in various mathematical and real-world applications. For example, in economics, the sign of this expression can affect the behavior of economic systems. In physics, the sign of this expression can affect the behavior of physical systems.</p> <h2><strong>Q: What are some real-world applications of the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>?</strong></h2> <p>A: Some real-world applications of the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> include:</p> <ul> <li>Economics: The sign of this expression can affect the behavior of economic systems, such as the behavior of supply and demand.</li> <li>Physics: The sign of this expression can affect the behavior of physical systems, such as the behavior of particles in a gas.</li> <li>Biology: The sign of this expression can affect the behavior of biological systems, such as the behavior of populations of organisms.</li> </ul> <h2><strong>Q: What are some future research directions for the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>?</strong></h2> <p>A: Some future research directions for the expression <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h&#x27;(x)h(x) - f&#x27;(x) f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> include:</p> <ul> <li>Investigating the implications of the sign of this expression in various mathematical and real-world applications.</li> <li>Developing new mathematical tools and techniques to analyze the behavior of this expression.</li> <li>Applying the expression to new fields and areas of study, such as computer science and engineering.</li> </ul>