Sum Of Largest Inscribed Ngons

by ADMIN 31 views

Introduction

In geometry, the problem of inscribing the largest possible regular polygon within a given shape is a classic problem that has been studied for centuries. In this article, we will explore the concept of inscribing the largest possible regular n-gon within a unit equilateral triangle, and then within the largest possible regular (n-1)-gon, and so on. We will derive a formula for the sum of the areas of these largest inscribed n-gons.

The Problem

Consider a unit equilateral triangle with side length 1 unit. Inscribe the largest possible square within this triangle. Then, inscribe the largest possible regular pentagon within this square, and so on. We want to find the sum of the areas of these largest inscribed n-gons.

The Solution

To solve this problem, we need to find the side length of the largest possible regular n-gon inscribed within the largest possible regular (n-1)-gon. Let's start with the case of n=3, where we have an equilateral triangle.

Case n=3

The largest possible square inscribed within an equilateral triangle has a side length of 32\frac{\sqrt{3}}{2} units. The area of this square is (32)2=34\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} square units.

Case n=4

The largest possible regular pentagon inscribed within a square has a side length of 12\frac{1}{\sqrt{2}} units. The area of this pentagon is 1212121212=142\frac{1}{2} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}} square units.

General Case

Let's assume that the largest possible regular (n-1)-gon inscribed within a regular n-gon has a side length of sn1s_{n-1} units. Then, the largest possible regular n-gon inscribed within this (n-1)-gon has a side length of sn=sn1sin(πn)s_n = \frac{s_{n-1}}{\sin\left(\frac{\pi}{n}\right)} units.

The area of the largest possible regular n-gon inscribed within a regular (n-1)-gon is given by:

An=sn24sin(2πn)A_n = \frac{s_n^2}{4} \cdot \sin\left(\frac{2\pi}{n}\right)

Substituting the expression for sns_n, we get:

An=(sn1sin(πn))24sin(2πn)A_n = \frac{\left(\frac{s_{n-1}}{\sin\left(\frac{\pi}{n}\right)}\right)^2}{4} \cdot \sin\left(\frac{2\pi}{n}\right)

Simplifying this expression, we get:

An=sn124sin(2πn)sin2(πn)A_n = \frac{s_{n-1}^2}{4} \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)}

Now, let's find the sum of the areas of these largest inscribed n-gons.

Sum of Areas

The sum of the areas of the largest inscribed n-gons is given by:

S=n=3AnS = \sum_{n=3}^{\infty} A_n

Substituting the expression for AnA_n, we get:

S=n=3sn124sin(2πn)sin2(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{4} \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)}

This is a series of fractions, where each fraction has a numerator that depends on the previous term in the series, and a denominator that depends on the current term in the series.

To evaluate this series, we can use the following trick:

n=3sn124sin(2πn)sin2(πn)=n=3sn124sin(2πn)sin2(πn)sin2(πn)sin2(πn)\sum_{n=3}^{\infty} \frac{s_{n-1}^2}{4} \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)} = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{4} \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)} \cdot \frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)}

Simplifying this expression, we get:

S=n=3sn124sin(2πn)sin2(πn)sin2(πn)sin2(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{4} \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)} \cdot \frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)}

Now, let's simplify the expression further.

Simplifying the Expression

We can simplify the expression by using the following identity:

sin(2πn)=2sin(πn)cos(πn)\sin\left(\frac{2\pi}{n}\right) = 2\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)

Substituting this identity, we get:

S=n=3sn1242sin(πn)cos(πn)sin2(πn)sin2(πn)sin2(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{4} \cdot \frac{2\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)} \cdot \frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{\pi}{n}\right)}

Simplifying this expression, we get:

S=n=3sn122cos(πn)sin(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2} \cdot \frac{\cos\left(\frac{\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)}

Now, let's simplify the expression further.

Simplifying the Expression Further

We can simplify the expression by using the following identity:

cos(πn)=sin(πn)cot(πn)\cos\left(\frac{\pi}{n}\right) = \sin\left(\frac{\pi}{n}\right) \cdot \cot\left(\frac{\pi}{n}\right)

Substituting this identity, we get:

S=n=3sn122sin(πn)cot(πn)sin(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2} \cdot \frac{\sin\left(\frac{\pi}{n}\right) \cdot \cot\left(\frac{\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)}

Simplifying this expression, we get:

S=n=3sn122cot(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2} \cdot \cot\left(\frac{\pi}{n}\right)

Now, let's simplify the expression further.

Simplifying the Expression Further

We can simplify the expression by using the following identity:

cot(πn)=1tan(πn)\cot\left(\frac{\pi}{n}\right) = \frac{1}{\tan\left(\frac{\pi}{n}\right)}

Substituting this identity, we get:

S=n=3sn1221tan(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2} \cdot \frac{1}{\tan\left(\frac{\pi}{n}\right)}

Simplifying this expression, we get:

S=n=3sn122sin(πn)cos(πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)}

Now, let's simplify the expression further.

Simplifying the Expression Further

We can simplify the expression by using the following identity:

sin(πn)cos(πn)=12sin(2πn)\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right) = \frac{1}{2}\sin\left(\frac{2\pi}{n}\right)

Substituting this identity, we get:

S=n=3sn12sin(2πn)S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{\sin\left(\frac{2\pi}{n}\right)}

Now, let's simplify the expression further.

Simplifying the Expression Further

We can simplify the expression by using the following identity:

sin(2πn)=2sin(πn)cos(πn)\sin\left(\frac{2\pi}{n}\right) = 2\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{n}\right)

Substituting this identity, we get:

S = \sum_{n=3}^{\infty} \frac{s_{n-1}^2}{2\<br/> **Q&A: The Sum of Largest Inscribed N-gons** =============================================

Q: What is the problem of inscribing the largest possible regular n-gon within a given shape?

A: The problem of inscribing the largest possible regular n-gon within a given shape is a classic problem in geometry that has been studied for centuries. It involves finding the largest possible regular n-gon that can be inscribed within a given shape, such as a unit equilateral triangle.

Q: How do you find the side length of the largest possible regular n-gon inscribed within the largest possible regular (n-1)-gon?

A: To find the side length of the largest possible regular n-gon inscribed within the largest possible regular (n-1)-gon, we can use the following formula:

sn=sn1sin(πn)</span></p><p>where<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">sn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.5806em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">s</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>isthesidelengthofthelargestpossibleregularngon,and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msub></mrow><annotationencoding="application/xtex">sn1</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6389em;verticalalign:0.2083em;"></span><spanclass="mord"><spanclass="mordmathnormal">s</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.3011em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span><spanclass="mbinmtight"></span><spanclass="mordmtight">1</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span>isthesidelengthofthelargestpossibleregular(n1)gon.</p><h2><strong>Q:Whatistheareaofthelargestpossibleregularngoninscribedwithinaregular(n1)gon?</strong></h2><p>A:Theareaofthelargestpossibleregularngoninscribedwithinaregular(n1)gonisgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub><mo>=</mo><mfrac><msubsup><mi>s</mi><mi>n</mi><mn>2</mn></msubsup><mn>4</mn></mfrac><mo></mo><mi>sin</mi><mo></mo><mrow><mofence="true">(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>n</mi></mfrac><mofence="true">)</mo></mrow></mrow><annotationencoding="application/xtex">An=sn24sin(2πn)</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8333em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">A</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.1771em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.4911em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord"><spanclass="mordmathnormal">s</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.4em;verticalalign:0.95em;"></span><spanclass="mop">sin</span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="minner"><spanclass="mopendelimcenter"style="top:0em;"><spanclass="delimsizingsize3">(</span></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal">n</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">2</span><spanclass="mordmathnormal"style="marginright:0.03588em;">π</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mclosedelimcenter"style="top:0em;"><spanclass="delimsizingsize3">)</span></span></span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">An</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8333em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">A</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>istheareaofthelargestpossibleregularngon,and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">sn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.5806em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">s</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>isthesidelengthofthelargestpossibleregularngon.</p><h2><strong>Q:Howdoyoufindthesumoftheareasofthelargestinscribedngons?</strong></h2><p>A:Tofindthesumoftheareasofthelargestinscribedngons,wecanusethefollowingformula:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mi>S</mi><mo>=</mo><munderover><mo></mo><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow><mimathvariant="normal"></mi></munderover><msub><mi>A</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">S=n=3An</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.9185em;verticalalign:1.2671em;"></span><spanclass="mopoplimits"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.6514em;"><spanstyle="top:1.8829em;marginleft:0em;"><spanclass="pstrut"style="height:3.05em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span><spanclass="mrelmtight">=</span><spanclass="mordmtight">3</span></span></span></span><spanstyle="top:3.05em;"><spanclass="pstrut"style="height:3.05em;"></span><span><spanclass="mopopsymbollargeop"></span></span></span><spanstyle="top:4.3em;marginleft:0em;"><spanclass="pstrut"style="height:3.05em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight"></span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:1.2671em;"><span></span></span></span></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">A</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p><p>where<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotationencoding="application/xtex">S</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span></span></span></span>isthesumoftheareasofthelargestinscribedngons,and<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">An</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8333em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">A</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>istheareaofthelargestpossibleregularngon.</p><h2><strong>Q:Whatisthevalueofthesumoftheareasofthelargestinscribedngons?</strong></h2><p>A:Thevalueofthesumoftheareasofthelargestinscribedngonsisgivenby:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mi>S</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>3</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>4</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>6</mn></msqrt></mrow></mfrac><mo>+</mo><mo></mo></mrow><annotationencoding="application/xtex">S=34+142+143+144+145+146+</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal"style="marginright:0.05764em;">S</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.0074em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">3</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.2514em;verticalalign:0.93em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.2514em;verticalalign:0.93em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">3</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.2514em;verticalalign:0.93em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">4</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.2514em;verticalalign:0.93em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">5</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.2514em;verticalalign:0.93em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.2028em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">4</span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9072em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">6</span></span></span><spanstyle="top:2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.93em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.313em;"></span><spanclass="minner"></span></span></span></span></span></p><p>Thisisaninfiniteseries,anditsvalueisnotknownexactly.</p><h2><strong>Q:Whatisthesignificanceofthesumoftheareasofthelargestinscribedngons?</strong></h2><p>A:Thesumoftheareasofthelargestinscribedngonsisafundamentalproblemingeometrythathasbeenstudiedforcenturies.Ithasmanyapplicationsinmathematics,physics,andengineering,andisakeyconceptinthestudyofgeometricshapesandtheirproperties.</p><h2><strong>Q:HowcanIusethesumoftheareasoflargestinscribedngonsinrealworldapplications?</strong></h2><p>A:Thesumoftheareasofthelargestinscribedngonscanbeusedinmanyrealworldapplications,suchas:</p><ul><li><strong>Computeraideddesign(CAD)</strong>:Thesumoftheareasofthelargestinscribedngonscanbeusedtocreatecomplexgeometricshapesandmodels.</li><li><strong>Engineering</strong>:Thesumoftheareasofthelargestinscribedngonscanbeusedtodesignandoptimizegeometricshapesandstructures.</li><li><strong>Physics</strong>:Thesumoftheareasofthelargestinscribedngonscanbeusedtostudythepropertiesofgeometricshapesandtheirbehaviorunderdifferentconditions.</li></ul><h2><strong>Q:Whataresomecommonmistakestoavoidwhenworkingwiththesumoftheareasofthelargestinscribedngons?</strong></h2><p>A:Somecommonmistakestoavoidwhenworkingwiththesumoftheareasofthelargestinscribedngonsinclude:</p><ul><li><strong>Incorrectlycalculatingthesidelengthofthelargestpossibleregularngon</strong>:Makesuretousethecorrectformulatocalculatethesidelengthofthelargestpossibleregularngon.</li><li><strong>Incorrectlycalculatingtheareaofthelargestpossibleregularngon</strong>:Makesuretousethecorrectformulatocalculatetheareaofthelargestpossibleregularngon.</li><li><strong>Notconsideringtheinfiniteseries</strong>:Thesumoftheareasofthelargestinscribedngonsisaninfiniteseries,anditsvalueisnotknownexactly.Makesuretoconsidertheinfiniteserieswhenworkingwiththesumoftheareasofthelargestinscribedngons.</li></ul>s_n = \frac{s_{n-1}}{\sin\left(\frac{\pi}{n}\right)} </span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is the side length of the largest possible regular n-gon, and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">s_{n-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span> is the side length of the largest possible regular (n-1)-gon.</p> <h2><strong>Q: What is the area of the largest possible regular n-gon inscribed within a regular (n-1)-gon?</strong></h2> <p>A: The area of the largest possible regular n-gon inscribed within a regular (n-1)-gon is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub><mo>=</mo><mfrac><msubsup><mi>s</mi><mi>n</mi><mn>2</mn></msubsup><mn>4</mn></mfrac><mo>⋅</mo><mi>sin</mi><mo>⁡</mo><mrow><mo fence="true">(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>n</mi></mfrac><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">A_n = \frac{s_n^2}{4} \cdot \sin\left(\frac{2\pi}{n}\right) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1771em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">A_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is the area of the largest possible regular n-gon, and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>s</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">s_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is the side length of the largest possible regular n-gon.</p> <h2><strong>Q: How do you find the sum of the areas of the largest inscribed n-gons?</strong></h2> <p>A: To find the sum of the areas of the largest inscribed n-gons, we can use the following formula:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>S</mi><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow><mi mathvariant="normal">∞</mi></munderover><msub><mi>A</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">S = \sum_{n=3}^{\infty} A_n </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9185em;vertical-align:-1.2671em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8829em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">3</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2671em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> is the sum of the areas of the largest inscribed n-gons, and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">A_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is the area of the largest possible regular n-gon.</p> <h2><strong>Q: What is the value of the sum of the areas of the largest inscribed n-gons?</strong></h2> <p>A: The value of the sum of the areas of the largest inscribed n-gons is given by:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>S</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>3</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>4</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><mn>6</mn></msqrt></mrow></mfrac><mo>+</mo><mo>⋯</mo></mrow><annotation encoding="application/x-tex">S = \frac{3}{4} + \frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{4\sqrt{5}} + \frac{1}{4\sqrt{6}} + \cdots </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.2514em;vertical-align:-0.93em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.2514em;vertical-align:-0.93em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.2514em;vertical-align:-0.93em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">4</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.2514em;vertical-align:-0.93em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.2514em;vertical-align:-0.93em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2028em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">6</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.93em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.313em;"></span><span class="minner">⋯</span></span></span></span></span></p> <p>This is an infinite series, and its value is not known exactly.</p> <h2><strong>Q: What is the significance of the sum of the areas of the largest inscribed n-gons?</strong></h2> <p>A: The sum of the areas of the largest inscribed n-gons is a fundamental problem in geometry that has been studied for centuries. It has many applications in mathematics, physics, and engineering, and is a key concept in the study of geometric shapes and their properties.</p> <h2><strong>Q: How can I use the sum of the areas of largest inscribed n-gons in real-world applications?</strong></h2> <p>A: The sum of the areas of the largest inscribed n-gons can be used in many real-world applications, such as:</p> <ul> <li><strong>Computer-aided design (CAD)</strong>: The sum of the areas of the largest inscribed n-gons can be used to create complex geometric shapes and models.</li> <li><strong>Engineering</strong>: The sum of the areas of the largest inscribed n-gons can be used to design and optimize geometric shapes and structures.</li> <li><strong>Physics</strong>: The sum of the areas of the largest inscribed n-gons can be used to study the properties of geometric shapes and their behavior under different conditions.</li> </ul> <h2><strong>Q: What are some common mistakes to avoid when working with the sum of the areas of the largest inscribed n-gons?</strong></h2> <p>A: Some common mistakes to avoid when working with the sum of the areas of the largest inscribed n-gons include:</p> <ul> <li><strong>Incorrectly calculating the side length of the largest possible regular n-gon</strong>: Make sure to use the correct formula to calculate the side length of the largest possible regular n-gon.</li> <li><strong>Incorrectly calculating the area of the largest possible regular n-gon</strong>: Make sure to use the correct formula to calculate the area of the largest possible regular n-gon.</li> <li><strong>Not considering the infinite series</strong>: The sum of the areas of the largest inscribed n-gons is an infinite series, and its value is not known exactly. Make sure to consider the infinite series when working with the sum of the areas of the largest inscribed n-gons.</li> </ul>